Compare commits

...

33 Commits

Author SHA1 Message Date
dce0a74945 Version v0.3.50 - Fixing browsing behavior 2026-01-28 06:54:57 -04:00
d8e65b1799 Version v0.3.49 - Working on directory naviagation 2026-01-27 10:24:23 -04:00
1e017d81b7 Fixing user interface problems 2026-01-17 07:39:23 -04:00
2e2f78720e Added exponential padding to increase security. 2026-01-13 03:13:54 -05:00
302b200548 Version v0.3.48 - -m Fix directory encryption output filename - strip trailing slash from directory path 2025-12-27 12:18:08 -05:00
18a4441746 Version v0.3.47 - -m Fix directory decryption - skip pause for temp files to allow extraction to continue 2025-12-27 12:13:57 -05:00
974470238d Version v0.3.46 - -m Fix directory decryption default filename - remove .tar.gz.otp extension 2025-12-27 12:10:14 -05:00
7c2821dd0d Version v0.3.45 - -m Fix directory encryption output path - save in same directory as source 2025-12-27 12:03:27 -05:00
6f3976bc07 Version v0.3.44 - -m Disable pad integrity check during decryption for performance - trust filename checksum 2025-12-27 11:59:37 -05:00
3bef639cc3 Version v0.3.43 - -m Remove unnecessary calculate_checksum() calls during encryption - use filename checksum directly 2025-12-27 11:56:28 -05:00
81eded2995 Version v0.3.42 - -m Suppress miniz warnings in archive.c header include 2025-12-27 11:51:10 -05:00
e126e30889 Version v0.3.41 - -m Suppress miniz library warnings, auto-select pad when only one available 2025-12-27 11:49:29 -05:00
6fe12e0c1c Version v0.3.40 - -m Add directory encryption (TAR+GZIP+OTP), integrate ranger for directory selection, add microtar/miniz libraries, remove binary state file backward compatibility - enforce text format only 2025-12-27 11:45:31 -05:00
89aa3baff6 Version v0.3.39 - . 2025-12-25 08:25:18 -05:00
39e818dd51 Version v0.3.38 - Implement ChaCha20 nonce extension to support pads larger than 256GB 2025-12-24 10:00:32 -05:00
977da58a3b Version v0.3.37 - Implement ChaCha20 nonce extension to support pads larger than 256GB 2025-12-24 10:00:27 -05:00
2c311a9a61 Version v0.3.36 - "." 2025-12-21 09:18:39 -04:00
b969590625 Version v0.3.35 - Convert to decimal units (1000-based) to match system tools, add posix_fallocate for guaranteed space allocation, use f_bavail for accurate space reporting, add drive info to Pad Management header 2025-12-20 10:02:15 -04:00
cf52274c2c Version v0.3.34 - Fixed usb space reporting 2025-12-20 09:25:38 -04:00
f3599fef37 Version v0.3.33 - Update readme.md some more 2025-12-18 10:20:36 -04:00
c229aec88e Version v0.3.32 - Update readme.md some more 2025-12-18 10:12:41 -04:00
862465c5c2 Version v0.3.31 - Update readme.md 2025-12-18 09:53:22 -04:00
799e34e045 Version v0.3.30 - Update readme.md 2025-12-18 09:46:32 -04:00
1d6f4a225d Version v0.3.29 - Update versioning system 2025-12-18 09:33:18 -04:00
4bd0c5aa42 Version v0.3.28 - Cleaned up file structure, removing otp.c and otp.h files 2025-12-18 09:28:38 -04:00
dffae799aa Version v0.3.27 - Clean up .o files 2025-12-18 09:21:12 -04:00
ed9fb759db Version v0.3.26 - Change .state file to plain text instead of binary 2025-12-18 09:18:32 -04:00
2c7f16ce51 Version v0.3.25 - Clean up directory structure 2025-12-18 08:59:18 -04:00
6251aa5be8 Version v0.3.24 - Test build with new structure 2025-12-18 08:55:27 -04:00
a5a1bd92c4 Version v0.3.23 - Reorganized project structure - all sources in src/, builds in build/ 2025-12-18 08:54:57 -04:00
3ff91e7681 Version v0.3.22 - Fix delete error 2025-12-18 08:45:16 -04:00
05f5d6ca4f Version v0.3.21 - Fixing errors with adding entropy to file 2025-12-18 08:34:52 -04:00
33b34bf5a5 Reupload 2025-10-09 10:45:04 -04:00
32 changed files with 4113 additions and 7166 deletions

29
.gitignore vendored
View File

@@ -1,10 +1,33 @@
otp # Build artifacts
build/
*.o
src/*.o
# Runtime directories
pads/ pads/
files/ files/
# Personal files
Gemini.md Gemini.md
TropicOfCancer-HenryMiller.txt TropicOfCancer-HenryMiller.txt
.gitea_token .gitea_token
true_rng/ true_rng/
swiftrng/ Trash/
# Auto-generated files (none currently) # Test binaries
debug
test_swiftrng
test_swiftrng_debug
test_swiftrng_detailed
test_truerng
# Temporary files
*.pad
*.state
# Downloaded dependencies (source)
miniz/
microtar/
# Test directories
test_dir/

View File

@@ -1,29 +1,49 @@
CC = gcc CC = gcc
CFLAGS = -Wall -Wextra -std=c99 -Iinclude CFLAGS = -Wall -Wextra -std=c99 -Isrc -Iminiz -Imicrotar/src
CFLAGS_MINIZ = -Wall -Wextra -std=c99 -D_POSIX_C_SOURCE=200112L -Isrc -Iminiz -Imicrotar/src -Wno-unused-function -Wno-implicit-function-declaration
LIBS = -lm LIBS = -lm
LIBS_STATIC = -static -lm LIBS_STATIC = -static -lm
TARGET = otp ARCH = $(shell uname -m)
SOURCES = $(wildcard src/*.c) nostr_chacha20.c otp.c TARGET = build/otp-$(ARCH)
SOURCES = $(wildcard src/*.c)
MINIZ_SOURCES = $(wildcard miniz/*.c)
MICROTAR_SOURCES = $(wildcard microtar/src/*.c)
OBJS = $(SOURCES:.c=.o) OBJS = $(SOURCES:.c=.o)
MINIZ_OBJS = $(MINIZ_SOURCES:.c=.o)
MICROTAR_OBJS = $(MICROTAR_SOURCES:.c=.o)
ALL_OBJS = $(OBJS) $(MINIZ_OBJS) $(MICROTAR_OBJS)
# Default build target # Default build target
$(TARGET): $(OBJS) $(TARGET): $(ALL_OBJS)
$(CC) $(CFLAGS) -o $(TARGET) $(OBJS) $(LIBS) @mkdir -p build
$(CC) $(CFLAGS) -o $(TARGET) $(ALL_OBJS) $(LIBS)
@rm -f $(ALL_OBJS)
# Static linking target # Static linking target
static: $(OBJS) static: $(ALL_OBJS)
$(CC) $(CFLAGS) -o $(TARGET) $(OBJS) $(LIBS_STATIC) @mkdir -p build
$(CC) $(CFLAGS) -o $(TARGET) $(ALL_OBJS) $(LIBS_STATIC)
@rm -f $(ALL_OBJS)
%.o: %.c # Compile main source files with full warnings
src/%.o: src/%.c
$(CC) $(CFLAGS) -c $< -o $@
# Compile miniz library files with reduced warnings
miniz/%.o: miniz/%.c
$(CC) $(CFLAGS_MINIZ) -c $< -o $@
# Compile microtar library files normally
microtar/src/%.o: microtar/src/%.c
$(CC) $(CFLAGS) -c $< -o $@ $(CC) $(CFLAGS) -c $< -o $@
clean: clean:
rm -f $(TARGET) $(OBJS) *.pad *.state rm -f $(OBJS) src/*.o build/otp-* *.pad *.state
install: install:
sudo cp $(TARGET) /usr/local/bin/ sudo cp $(TARGET) /usr/local/bin/otp
uninstall: uninstall:
sudo rm -f /usr/local/bin/$(TARGET) sudo rm -f /usr/local/bin/otp
.PHONY: clean install uninstall static .PHONY: clean install uninstall static

328
README.md
View File

@@ -1,9 +1,8 @@
# OTP Cipher - One Time Pad Implementation # OTP Cipher - One Time Pad Implementation
## Introduction ## Introduction
A secure one-time pad (OTP) cipher implementation in C. A secure one-time pad (OTP) cipher implementation in C99.
## Why One-Time Pads ## Why One-Time Pads
@@ -41,120 +40,149 @@ To address this problem, we can use Nostr to share among devices the place in th
One-time pads can be trivially encrypted and decrypted using pencil and paper, making them accessible even without electronic devices. One-time pads can be trivially encrypted and decrypted using pencil and paper, making them accessible even without electronic devices.
## Features ## Features
- **Perfect Security**: Implements true one-time pad encryption with information-theoretic security - **Perfect Security**: Implements true one-time pad encryption with information-theoretic security
- **Traffic Analysis Resistance**: Exponential bucketing with ISO/IEC 9797-1 Method 2 (Padmé) padding hides message lengths
- **Text & File Encryption**: Supports both inline text and file encryption - **Text & File Encryption**: Supports both inline text and file encryption
- **Multiple Output Formats**: Binary (.otp) and ASCII armored (.otp.asc) file formats - **Multiple Output Formats**: Binary (.otp) and ASCII armored (.otp.asc) file formats
- **Hardware RNG Support**: Direct entropy collection from TrueRNG USB devices with automatic detection
- **Keyboard Entropy**: Optional keyboard entropy collection for enhanced randomness - **Keyboard Entropy**: Optional keyboard entropy collection for enhanced randomness
- **Modular Architecture**: Clean separation of concerns across multiple source modules
- **Short Command Flags**: Convenient single-character flags for all operations - **Short Command Flags**: Convenient single-character flags for all operations
- **Automatic Versioning**: Built-in semantic versioning with automatic patch increment - **Automatic Versioning**: Built-in semantic versioning with automatic patch increment
- **Multiple Build Options**: Standard and static linking builds - **Multiple Build Options**: Standard and static linking builds
- **Cross-Platform**: Works on Linux and other UNIX-like systems - **Cross-Platform**: Works on Linux and other UNIX-like systems
## Building ## Quick Start
### Download Pre-Built Binaries
**[Download Current Linux x86](https://git.laantungir.net/laantungir/otp/releases/download/v0.3.49/otp-v0.3.49-linux-x86_64)**
**[Download Current Raspberry Pi 64](https://git.laantungir.net/laantungir/otp/releases/download/v0.3.49/otp-v0.3.49-linux-arm64)**
After downloading:
```bash
# Rename for convenience, then make executable
mv otp-v0.3.49-linux-x86_64 otp
chmod +x otp
# Run it
./otp
```
### First Steps
1. **Generate your first pad:**
```bash
./otp generate 1GB
```
2. **Encrypt a message:**
```bash
./otp encrypt
# Follow the interactive prompts
```
3. **Decrypt a message:**
```bash
./otp decrypt
# Paste the encrypted message
```
## Building from Source
### Prerequisites ### Prerequisites
- GCC compiler - GCC compiler
- Git (for version tracking)
- Make - Make
### Build Commands ### Build Commands
Use the included build script for automatic versioning:
```bash ```bash
# Standard build (default) make # Build for current architecture
./build.sh build make static # Static linking (standalone binary)
make clean # Clean build artifacts
# Static linking build make install # Install to /usr/local/bin/otp
./build.sh static make uninstall # Remove from system
# Clean build artifacts
./build.sh clean
# Generate version files only
./build.sh version
# Install to system
./build.sh install
# Remove from system
./build.sh uninstall
# Show usage
./build.sh help
``` ```
### Traditional Make Output: `build/otp-$(ARCH)` (e.g., `build/otp-x86_64`)
You can also use make directly (without automatic versioning):
After building, run with:
```bash ```bash
make # Standard build ./build/otp-x86_64
make static # Static linking
make clean # Clean artifacts
make install # Install to /usr/local/bin/
make uninstall # Remove from system
``` ```
## Usage ## Usage
The OTP Cipher operates in two modes:
**Interactive Mode**: Run without arguments to access a menu-driven interface. Best for exploring features, managing pads, and performing operations step-by-step with prompts and guidance.
**Command Line Mode**: Provide arguments to execute specific operations directly. Ideal for scripting, automation, and quick one-off tasks.
### Interactive Mode ### Interactive Mode
Launch the menu-driven interface:
```bash ```bash
./otp ./otp
``` ```
Navigate through menus to generate pads, encrypt/decrypt messages, manage pads, and configure settings.
### Command Line Mode ### Command Line Mode
Execute operations directly with arguments:
```bash ```bash
# Generate a new pad # Generate a new pad
./otp generate 1GB ./otp generate 1GB
# Encrypt text (interactive input) # Encrypt text (will prompt for input)
./otp encrypt <pad_hash_or_prefix> ./otp encrypt <pad_hash_or_prefix>
# Decrypt message (interactive input) # Decrypt message (will prompt for input)
./otp decrypt <pad_hash_or_prefix> ./otp decrypt <pad_hash_or_prefix>
# List available pads # List available pads
./otp list ./otp list
``` ```
## Version System Details ## Version System
### Centralized Version Management
Version is defined in a single location: `src/main.h`
```c
#define OTP_VERSION "v0.3.24"
```
All code references this constant, ensuring consistency across:
- Main menu display
- ASCII armor output
- Help/usage text
### Automatic Version Increment ### Automatic Version Increment
Every build automatically increments the patch version: The `build.sh` script automatically:
- v0.1.0 → v0.1.1 → v0.1.2, etc. 1. Increments patch version (v0.3.24 → v0.3.25)
- Creates git tags for each version 2. Updates `OTP_VERSION` in `src/main.h`
- Embeds detailed build information 3. Creates git commit and tag
4. Pushes to remote repository
### Manual Version Control ### Manual Version Control
For major/minor releases, create tags manually: For major/minor releases, create tags manually:
```bash ```bash
# Feature release (minor bump) # Feature release (minor bump)
git tag v0.2.0 # Next build: v0.2.1 git tag v0.4.0 # Next build: v0.4.1
# Breaking change (major bump) # Breaking change (major bump)
git tag v1.0.0 # Next build: v1.0.1 git tag v1.0.0 # Next build: v1.0.1
``` ```
### Version Information Available
- Version number (major.minor.patch)
- Git commit hash and branch
- Build date and time
- Full version display with metadata
### Generated Files
The build system automatically manages Git versioning by incrementing tags.
These files are excluded from git (.gitignore) and regenerated on each build.
## Security Features ## Security Features
- Uses `/dev/urandom` for cryptographically secure random number generation - Uses `/dev/urandom` for cryptographically secure random number generation
@@ -162,21 +190,148 @@ These files are excluded from git (.gitignore) and regenerated on each build.
- Custom 256-bit XOR checksum for pad identification (encrypted with pad data) - Custom 256-bit XOR checksum for pad identification (encrypted with pad data)
- Read-only pad files to prevent accidental modification - Read-only pad files to prevent accidental modification
- State tracking to prevent pad reuse - State tracking to prevent pad reuse
- **Message Length Hiding**: Exponential bucketing (256B, 512B, 1KB, 2KB, 4KB...) prevents traffic analysis
- **ISO/IEC 9797-1 Method 2 Padding**: Standard-compliant Padmé padding with 0x80 marker
- **Zero external crypto dependencies** - completely self-contained implementation - **Zero external crypto dependencies** - completely self-contained implementation
## File Structure ### Message Padding
All encrypted messages and files are automatically padded using exponential bucketing to resist traffic analysis attacks:
- **Minimum size**: 256 bytes
- **Bucket sizes**: 256B → 512B → 1KB → 2KB → 4KB → 8KB → ...
- **Padding method**: ISO/IEC 9797-1 Method 2 (Padmé padding)
- Appends `0x80` byte after message
- Fills remaining space with `0x00` bytes
- Unambiguous padding removal during decryption
**Example**: A 10-byte message is padded to 256 bytes, while a 300-byte message is padded to 512 bytes. This provides strong protection for small messages where length leakage matters most, with logarithmic overhead for larger messages.
## Project Structure
``` ```
otp/ otp/
├── build.sh # Build script with automatic versioning ├── build.sh # Build script with automatic versioning
├── Makefile # Traditional make build system ├── Makefile # Traditional make build system
├── otp.c # Main source code ├── README.md # This file
├── README.md # This file ├── .gitignore # Git ignore rules
├── .gitignore # Git ignore rules ├── src/
├── pads/ # OTP pad storage directory (created at runtime) │ ├── main.h # Main header with all prototypes and OTP_VERSION
└── VERSION # Plain text version (generated) │ ├── main.c # Application entry point and command line handling
│ ├── ui.c # Interactive user interface and menu system
│ ├── state.c # Global state management (pads directory, preferences)
│ ├── crypto.c # Core cryptographic operations (XOR, base64)
│ ├── padding.c # Message padding (exponential bucketing, Padmé padding)
│ ├── pads.c # Pad management and file operations
│ ├── entropy.c # Entropy collection from various sources
│ ├── trng.c # Hardware RNG device detection and collection
│ ├── util.c # Utility functions and helpers
│ ├── nostr_chacha20.c # ChaCha20 implementation for entropy expansion
│ └── nostr_chacha20.h # ChaCha20 header
├── build/
│ ├── otp-x86_64 # Native x86_64 binary (created by build)
│ └── otp-arm64 # ARM64 binary (created by cross-compilation)
├── pads/ # OTP pad storage directory (created at runtime)
├── files/ # Encrypted file storage (created at runtime)
└── tests/ # Test scripts and utilities
└── test_padding.sh # Padding implementation tests
``` ```
## Architecture
The OTP cipher uses a modular architecture with clean separation of concerns:
- **main.c**: Application entry point, command line parsing, and mode selection
- **ui.c**: Interactive user interface, menus, and terminal management
- **state.c**: Global state management (pads directory, terminal dimensions, preferences)
- **crypto.c**: Core cryptographic operations (XOR encryption, base64 encoding)
- **padding.c**: Message padding implementation (exponential bucketing, ISO/IEC 9797-1 Method 2)
- **pads.c**: Pad file management, checksums, and state tracking
- **entropy.c**: Entropy collection from keyboard, dice, files, and hardware RNG
- **trng.c**: Hardware RNG device detection and entropy collection from USB devices
- **util.c**: Utility functions, file operations, and helper routines
- **nostr_chacha20.c**: ChaCha20 stream cipher for entropy expansion
All modules share a common header (`src/main.h`) that defines the public API, data structures, and version constant.
## Hardware RNG Device Support
The OTP cipher includes comprehensive support for hardware random number generators (RNGs) to enhance entropy quality for pad generation and entropy addition operations.
### Supported Devices
The system automatically detects and supports the following hardware RNG devices:
| Device | VID:PID | Status | Notes |
|--------|---------|--------|-------|
| **TrueRNG** | 04d8:f5fe | ✅ Working | Original TrueRNG device |
| **TrueRNG (Alt)** | 1fc9:8111 | ✅ Working | Alternative VID/PID combination |
| **TrueRNG Pro** | 04d8:f5fe | ✅ Working | Professional version |
| **TrueRNG Pro V2** | 04d8:f5fe | ✅ Working | Latest professional version |
### Device Detection
The system automatically scans `/dev/ttyACM*` ports and identifies hardware RNG devices by:
1. **USB VID/PID Detection**: Reading vendor and product IDs from sysfs
2. **Device Type Classification**: Identifying specific device variants
3. **Port Configuration**: Applying device-specific serial port settings
4. **Interactive Selection**: Presenting available devices for user selection
### Testing Hardware Devices
A comprehensive test script is included to verify hardware RNG functionality:
```bash
# Run hardware device tests
./test.sh
```
The test script performs:
- **Device Detection**: Scans for and identifies all connected hardware RNG devices
- **Connectivity Testing**: Verifies each device can be opened and read from
- **Configuration Testing**: Validates serial port configuration for each device type
- **Entropy Quality Analysis**: Measures Shannon entropy of collected random data
### Current Test Results
Based on testing with actual hardware devices:
**✅ Working Devices:**
- TrueRNG (Type 1): Full functionality confirmed
- TrueRNG Pro V2 (Type 3): Full functionality confirmed
- Device is detected and identified correctly
- Serial port configuration may need adjustment for this device variant
### Usage in Entropy Collection
When generating pads or adding entropy, the system will:
1. **Auto-detect** all connected hardware RNG devices
2. **Present a menu** of available devices if multiple are found
3. **Test connectivity** before beginning entropy collection
4. **Estimate completion time** based on device speed testing
5. **Collect entropy** with progress indicators and quality metrics
### Device Configuration
Each device type uses optimized serial port settings:
- **TrueRNG devices**: 3Mbps baud rate, 8N1, no flow control
- **Automatic timeout protection**: Prevents hanging on unresponsive devices
- **Error recovery**: Graceful handling of device disconnection during operation
### Troubleshooting
If hardware RNG devices are not detected:
1. **Check USB connections**: Ensure devices are properly connected
2. **Verify permissions**: User must have access to `/dev/ttyACM*` devices
3. **Check device enumeration**: Use `lsusb` to verify USB device recognition
4. **Review sysfs entries**: Ensure VID/PID information is available in `/sys/bus/usb/devices/`
## File Formats ## File Formats
### .otp File Format (Binary) ### .otp File Format (Binary)
@@ -295,13 +450,48 @@ No. ChkSum (first 16 chars) Size Used % Used
# Select "S" for show pad info, enter checksum or prefix # Select "S" for show pad info, enter checksum or prefix
``` ```
## Important Notes
### Size Units: Decimal (SI) vs Binary (IEC)
**This program uses decimal (SI) units for all size specifications**, matching the behavior of most system tools like `ls -lh`, `df -h`, and file managers:
- **1 KB** = 1,000 bytes (not 1,024)
- **1 MB** = 1,000,000 bytes (not 1,048,576)
- **1 GB** = 1,000,000,000 bytes (not 1,073,741,824)
- **1 TB** = 1,000,000,000,000 bytes (not 1,099,511,627,776)
**Why decimal units?**
- Consistency with system tools (`ls`, `df`, file managers)
- Matches storage device marketing (a "1TB" USB drive has ~1,000,000,000,000 bytes)
- Avoids confusion when comparing sizes across different tools
- Industry standard for storage devices and file systems
**Example:** When you request a 100GB pad, the program creates exactly 100,000,000,000 bytes, which will display as "100GB" in `ls -lh` and your file manager.
**Note:** Some technical tools may use binary units (GiB, MiB) where 1 GiB = 1,024³ bytes. This program intentionally uses decimal units for user-friendliness and consistency with common tools.
## License ## License
This project includes automatic versioning system based on the Generic Automatic Version Increment System. This project includes automatic versioning system based on the Generic Automatic Version Increment System.
## State Files
Pad state files (`.state`) use a human-readable text format:
```
offset=1234567890
```
This tracks how many bytes of each pad have been used. The format is:
- **Human-readable**: Can inspect with `cat checksum.state`
- **Backward compatible**: Automatically reads old binary format
- **Easy to debug**: Can manually edit if needed
## Contributing ## Contributing
When contributing: When contributing:
1. The version will automatically increment on builds 1. The version will automatically increment on builds via `build.sh`
2. For major features, consider manually creating minor version tags 2. Version is centralized in `src/main.h` as `OTP_VERSION`
3. Generated version files (`src/version.*`, `VERSION`) should not be committed 3. For major features, manually create minor/major version tags
4. Build artifacts in `build/` and object files are auto-cleaned

View File

@@ -1,3 +0,0 @@
# TODO
## The pad menu in interactive encrypt mode gives numbers instead of checksum selection

115
build.sh
View File

@@ -146,20 +146,53 @@ increment_version() {
update_source_version() { update_source_version() {
local NEW_VERSION="$1" local NEW_VERSION="$1"
print_status "Updating version strings in source code..." print_status "Updating version constant in source code..."
# Replace hardcoded version strings in otp.c with the current git tag # Update OTP_VERSION constant in src/main.h
if [ -f "otp.c" ]; then if [ -f "src/main.h" ]; then
# Update main menu version sed -i "s/#define OTP_VERSION \"v[0-9]\+\.[0-9]\+\.[0-9]\+\"/#define OTP_VERSION \"$NEW_VERSION\"/g" src/main.h
sed -i "s/OTP v[0-9]\+\.[0-9]\+\.[0-9]\+/OTP $NEW_VERSION/g" otp.c print_success "Updated OTP_VERSION in src/main.h to $NEW_VERSION"
# Update ASCII output version
sed -i "s/Version: v[0-9]\+\.[0-9]\+\.[0-9]\+/Version: $NEW_VERSION/g" otp.c
# Update usage/help text version
sed -i "s/Implementation v[0-9]\+\.[0-9]\+\.[0-9]\+/Implementation $NEW_VERSION/g" otp.c
print_success "Updated version strings in otp.c to $NEW_VERSION"
else else
print_warning "otp.c not found - skipping version string updates" print_warning "src/main.h not found - skipping version update"
fi
# Update README.md with direct download links
if [ -f "README.md" ]; then
print_status "Updating README.md with download links for $NEW_VERSION..."
# Create the new download section with direct download links
local NEW_DOWNLOAD_SECTION="### Download Pre-Built Binaries
**[Download Current Linux x86](https://git.laantungir.net/laantungir/otp/releases/download/${NEW_VERSION}/otp-${NEW_VERSION}-linux-x86_64)**
**[Download Current Raspberry Pi 64](https://git.laantungir.net/laantungir/otp/releases/download/${NEW_VERSION}/otp-${NEW_VERSION}-linux-arm64)**
After downloading:
\`\`\`bash
# Rename for convenience, then make executable
mv otp-${NEW_VERSION}-linux-x86_64 otp
chmod +x otp
# Run it
./otp
\`\`\`"
# Use awk to replace the section between "### Download Pre-Built Binaries" and "### First Steps"
awk -v new_section="$NEW_DOWNLOAD_SECTION" '
/^### Download Pre-Built Binaries/ {
print new_section
skip=1
next
}
/^### First Steps/ {
skip=0
}
!skip
' README.md > README.md.tmp && mv README.md.tmp README.md
print_success "Updated README.md with download links for $NEW_VERSION"
else
print_warning "README.md not found - skipping README update"
fi fi
} }
@@ -235,16 +268,16 @@ create_gitea_release() {
if echo "$response" | grep -q '"id"'; then if echo "$response" | grep -q '"id"'; then
print_success "Created release $version" print_success "Created release $version"
# Upload binaries with descriptive names # Upload binaries with descriptive names from build directory
upload_release_asset "$api_url" "$token" "$version" "otp-x86_64" "otp-${version}-linux-x86_64" upload_release_asset "$api_url" "$token" "$version" "build/otp-x86_64" "otp-${version}-linux-x86_64"
upload_release_asset "$api_url" "$token" "$version" "otp-arm64" "otp-${version}-linux-arm64" upload_release_asset "$api_url" "$token" "$version" "build/otp-arm64" "otp-${version}-linux-arm64"
else else
print_warning "Release may already exist or creation failed" print_warning "Release may already exist or creation failed"
print_status "Response: $response" print_status "Response: $response"
# Try to upload to existing release anyway # Try to upload to existing release anyway
upload_release_asset "$api_url" "$token" "$version" "otp-x86_64" "otp-${version}-linux-x86_64" upload_release_asset "$api_url" "$token" "$version" "build/otp-x86_64" "otp-${version}-linux-x86_64"
upload_release_asset "$api_url" "$token" "$version" "otp-arm64" "otp-${version}-linux-arm64" upload_release_asset "$api_url" "$token" "$version" "build/otp-arm64" "otp-${version}-linux-arm64"
fi fi
} }
@@ -259,9 +292,8 @@ build_project() {
# Build x86_64 only # Build x86_64 only
print_status "Building OTP project for x86_64..." print_status "Building OTP project for x86_64..."
make CC=gcc make CC=gcc ARCH=x86_64
if [ $? -eq 0 ]; then if [ $? -eq 0 ]; then
mv otp otp-x86_64
print_success "x86_64 build completed successfully" print_success "x86_64 build completed successfully"
else else
print_error "x86_64 build failed" print_error "x86_64 build failed"
@@ -270,10 +302,8 @@ build_project() {
else else
# Build both architectures # Build both architectures
print_status "Building OTP project for x86_64..." print_status "Building OTP project for x86_64..."
make clean make CC=gcc ARCH=x86_64
make CC=gcc
if [ $? -eq 0 ]; then if [ $? -eq 0 ]; then
mv otp otp-x86_64
print_success "x86_64 build completed successfully" print_success "x86_64 build completed successfully"
else else
print_error "x86_64 build failed" print_error "x86_64 build failed"
@@ -281,10 +311,10 @@ build_project() {
fi fi
print_status "Building OTP project for ARM64/AArch64..." print_status "Building OTP project for ARM64/AArch64..."
make clean # Clean only object files, not the x86_64 binary
make CC=aarch64-linux-gnu-gcc rm -f src/*.o
make CC=aarch64-linux-gnu-gcc ARCH=arm64
if [ $? -eq 0 ]; then if [ $? -eq 0 ]; then
mv otp otp-arm64
print_success "ARM64/AArch64 build completed successfully" print_success "ARM64/AArch64 build completed successfully"
else else
print_error "ARM64/AArch64 build failed" print_error "ARM64/AArch64 build failed"
@@ -292,6 +322,10 @@ build_project() {
fi fi
fi fi
# Clean up object files after successful build
print_status "Cleaning up object files..."
rm -f src/*.o
# Create Gitea release with binaries # Create Gitea release with binaries
if [ -f "$HOME/.gitea_token" ]; then if [ -f "$HOME/.gitea_token" ]; then
create_gitea_release "$NEW_VERSION" create_gitea_release "$NEW_VERSION"
@@ -306,16 +340,35 @@ build_project() {
clean_project() { clean_project() {
print_status "Cleaning build artifacts..." print_status "Cleaning build artifacts..."
make clean make clean
# Remove cross-compiled binaries # Remove build directory
rm -f otp-x86_64 otp-arm64 rm -rf build
print_success "Clean completed" print_success "Clean completed"
} }
install_project() { install_project() {
print_status "Installing OTP project..." print_status "Building project before installation..."
# Build the project first (without version increment for install)
print_status "Cleaning previous build..."
make clean
print_status "Building OTP project for x86_64..."
make CC=gcc ARCH=x86_64
if [ $? -ne 0 ]; then
print_error "Build failed"
return 1
fi
print_success "Build completed successfully"
# Clean up object files after successful build
print_status "Cleaning up object files..."
rm -f src/*.o miniz/*.o microtar/src/*.o
# Now install
print_status "Installing OTP project to system..."
make install make install
if [ $? -eq 0 ]; then if [ $? -eq 0 ]; then
print_success "Installation completed" print_success "Installation completed - binary installed to /usr/local/bin/otp"
else else
print_error "Installation failed" print_error "Installation failed"
return 1 return 1
@@ -362,8 +415,8 @@ case "$COMMAND" in
echo " uninstall - Remove from system" echo " uninstall - Remove from system"
echo "" echo ""
echo "Build Output:" echo "Build Output:"
echo " otp-x86_64 - Native x86_64 binary" echo " build/otp-x86_64 - Native x86_64 binary"
echo " otp-arm64 - ARM64/AArch64 binary for Raspberry Pi (if cross-compiler available)" echo " build/otp-arm64 - ARM64/AArch64 binary for Raspberry Pi (if cross-compiler available)"
echo "" echo ""
echo "Gitea Integration:" echo "Gitea Integration:"
echo " - Automatically creates releases with binaries if ~/.gitea_token exists" echo " - Automatically creates releases with binaries if ~/.gitea_token exists"

BIN
debug

Binary file not shown.

View File

@@ -1 +0,0 @@
int main() { printf("Testing direct filename: %d\n", strncmp("97d9d82b5414a9439102f3811fb90ab1d6368a00d33229a18b306476f9d04f82.pad", "97", 2)); return 0; }

BIN
dir_nav Executable file

Binary file not shown.

View File

@@ -1,22 +0,0 @@
#!/bin/bash
echo "Manual OTP Test"
echo "==============="
# Generate a test pad
echo "Generating test pad..."
./otp generate demo 1
echo
# Create a test message file for encryption
echo "Creating test message..."
echo "This is a secret message for testing OTP encryption!" > test_message.txt
# Test encryption interactively
echo "Testing encryption (will prompt for input):"
echo "Please enter: This is a secret message for testing OTP encryption!"
./otp encrypt demo
echo
echo "Files created:"
ls -la demo.*

6278
otp copy.c

File diff suppressed because it is too large Load Diff

35
otp.c
View File

@@ -1,35 +0,0 @@
#define _POSIX_C_SOURCE 200809L
#define _DEFAULT_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/statvfs.h>
#include <sys/ioctl.h>
#include <dirent.h>
#include <time.h>
#include <ctype.h>
#include <termios.h>
#include <fcntl.h>
#include <math.h>
#include "nostr_chacha20.h"
#include "otp.h"
#define MAX_INPUT_SIZE 4096
#define MAX_LINE_LENGTH 1024
#define MAX_HASH_LENGTH 65
#define PROGRESS_UPDATE_INTERVAL (64 * 1024 * 1024) // 64MB intervals
#define DEFAULT_PADS_DIR "pads"
#define FILES_DIR "files"
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// GLOBAL VARIABLES
///////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
char current_pads_dir[512] = DEFAULT_PADS_DIR;

329
otp.h
View File

@@ -1,329 +0,0 @@
#ifndef OTP_H
#define OTP_H
////////////////////////////////////////////////////////////////////////////////
// OTP CIPHER - FUNCTION PROTOTYPES HEADER
// One Time Pad Implementation v0.2.109
//
// This header file contains all function prototypes extracted from otp.c
// Organized by functional categories for better maintainability
////////////////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <termios.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <time.h>
#include <dirent.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <ctype.h>
// Constants
#define MAX_INPUT_SIZE 4096
#define MAX_LINE_LENGTH 1024
#define MAX_HASH_LENGTH 65
#define PROGRESS_UPDATE_INTERVAL (64 * 1024 * 1024) // 64MB intervals
#define DEFAULT_PADS_DIR "pads"
#define FILES_DIR "files"
#define MAX_ENTROPY_BUFFER (4 * 1024 * 1024) // 4MB entropy buffer for large operations
////////////////////////////////////////////////////////////////////////////////
// TYPE DEFINITIONS
////////////////////////////////////////////////////////////////////////////////
// Decrypt operation modes for universal decrypt function
typedef enum {
DECRYPT_MODE_INTERACTIVE, // Interactive text decryption with prompts
DECRYPT_MODE_SILENT, // Silent text decryption (no prompts/labels)
DECRYPT_MODE_FILE_TO_TEXT, // File to text output with prompts
DECRYPT_MODE_FILE_TO_FILE // File to file output (binary)
} decrypt_mode_t;
// Pad filter types for selection functions
typedef enum {
PAD_FILTER_ALL, // Show all pads
PAD_FILTER_UNUSED_ONLY // Show only unused pads (0% usage)
} pad_filter_type_t;
// Enhanced entropy system state structure
typedef struct {
size_t target_bytes; // Target entropy to collect
size_t collected_bytes; // Bytes collected so far
size_t unique_keys; // Number of unique keys pressed
double collection_start_time; // Start timestamp
double last_keypress_time; // Last keypress timestamp
unsigned char quality_score; // Entropy quality (0-100)
int auto_complete_enabled; // Allow auto-complete at minimum
unsigned char key_histogram[256]; // Track key frequency
} entropy_collection_state_t;
////////////////////////////////////////////////////////////////////////////////
// CORE APPLICATION FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Main application entry points
int main(int argc, char* argv[]);
int interactive_mode(void);
int command_line_mode(int argc, char* argv[]);
int pipe_mode(int argc, char* argv[], const char* piped_text);
////////////////////////////////////////////////////////////////////////////////
// INPUT/OUTPUT DETECTION FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Stdin detection functions
int has_stdin_data(void);
char* read_stdin_text(void);
////////////////////////////////////////////////////////////////////////////////
// PREFERENCES MANAGEMENT FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Configuration and preferences handling
int load_preferences(void);
int save_preferences(void);
char* get_preference(const char* key);
int set_preference(const char* key, const char* value);
char* get_default_pad_path(void);
int set_default_pad_path(const char* pad_path);
////////////////////////////////////////////////////////////////////////////////
// HARDWARE DETECTION FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// OTP thumb drive detection function
int detect_otp_thumb_drive(char* otp_drive_path, size_t path_size);
////////////////////////////////////////////////////////////////////////////////
// USB DRIVE MANAGEMENT FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// EXTERNAL TOOL INTEGRATION FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Editor and file manager functions
char* get_preferred_editor(void);
char* get_preferred_file_manager(void);
int launch_text_editor(const char* initial_content, char* result_buffer, size_t buffer_size);
int launch_file_manager(const char* start_directory, char* selected_file, size_t buffer_size);
////////////////////////////////////////////////////////////////////////////////
// CORE CRYPTOGRAPHIC OPERATIONS
////////////////////////////////////////////////////////////////////////////////
// Primary encryption/decryption functions
int generate_pad(uint64_t size_bytes, int show_progress);
int encrypt_text(const char* pad_identifier, const char* input_text);
int decrypt_text(const char* pad_identifier, const char* encrypted_message);
int encrypt_file(const char* pad_identifier, const char* input_file, const char* output_file, int ascii_armor);
int decrypt_file(const char* input_file, const char* output_file);
int decrypt_binary_file(FILE* input_fp, const char* output_file);
int decrypt_ascii_file(const char* input_file, const char* output_file);
////////////////////////////////////////////////////////////////////////////////
// ENHANCED ENTROPY SYSTEM FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Entropy source types
typedef enum {
ENTROPY_SOURCE_KEYBOARD = 1,
ENTROPY_SOURCE_DICE = 2,
ENTROPY_SOURCE_TRUERNG = 3,
ENTROPY_SOURCE_FILE = 4
} entropy_source_t;
// Terminal control for entropy collection
int setup_raw_terminal(struct termios* original_termios);
void restore_terminal(struct termios* original_termios);
// Entropy collection and feedback
int collect_entropy_with_feedback(unsigned char* entropy_buffer, size_t target_bytes,
size_t* collected_bytes, int allow_early_exit);
void display_entropy_progress(const entropy_collection_state_t* state);
void draw_progress_bar(double percentage, int width);
void draw_quality_bar(double quality, int width, const char* label);
// TrueRNG Device Constants (updated to match otp.c implementation)
#define TRUERNG_VID "04D8"
#define TRUERNG_PID "F5FE"
#define TRUERNGPRO_VID "16D0"
#define TRUERNGPRO_PID "0AA0"
#define TRUERNGPROV2_VID "04D8"
#define TRUERNGPROV2_PID "EBB5"
// SwiftRNG Device Constants (same VID/PID as TrueRNG devices)
#define SWIFT_RNG_VID "04D8"
#define SWIFT_RNG_PID "F5FE"
#define SWIFT_RNG_PRO_VID "16D0"
#define SWIFT_RNG_PRO_PID "0AA0"
#define SWIFT_RNG_PRO_V2_VID "04D8"
#define SWIFT_RNG_PRO_V2_PID "EBB5"
// TrueRNG/SwiftRNG Device Type enumeration
typedef enum {
TRUERNG_ORIGINAL = 1,
TRUERNG_PRO = 2,
TRUERNG_PRO_V2 = 3,
SWIFT_RNG = 4,
SWIFT_RNG_PRO = 5,
SWIFT_RNG_PRO_V2 = 6
} truerng_device_type_t;
// Hardware RNG device information structure
typedef struct {
char port_path[256]; // Device port path (e.g., /dev/ttyUSB0)
truerng_device_type_t device_type; // Device type identifier
char friendly_name[64]; // Human-readable device name
int is_working; // 1 if device passes basic test, 0 otherwise
} hardware_rng_device_t;
// Hardware RNG device detection and selection functions
int detect_all_hardware_rng_devices(hardware_rng_device_t* devices, int max_devices, int* num_devices_found);
int test_hardware_rng_device(const hardware_rng_device_t* device);
int select_hardware_rng_device_interactive(hardware_rng_device_t* devices, int num_devices, hardware_rng_device_t* selected_device);
int find_truerng_port(char* port_path, size_t port_path_size, truerng_device_type_t* device_type); // Legacy function for backward compatibility
// TrueRNG entropy collection functions (updated to match implementation)
int setup_truerng_serial_port(const char* port_path);
int collect_truerng_entropy(unsigned char* entropy_buffer, size_t target_bytes, size_t* collected_bytes, int display_progress);
int collect_truerng_entropy_from_device(const hardware_rng_device_t* device, unsigned char* entropy_buffer,
size_t target_bytes, size_t* collected_bytes, int display_progress);
int collect_truerng_entropy_streaming_from_device(const hardware_rng_device_t* device, const char* pad_chksum,
size_t total_bytes, int display_progress, int entropy_mode);
const char* get_truerng_device_name(truerng_device_type_t device_type);
int read_usb_device_info(const char* port_name, char* vid, char* pid);
// Dice entropy collection functions (updated to match implementation)
int collect_dice_entropy(unsigned char* entropy_buffer, size_t target_bytes, size_t* collected_bytes, int display_progress);
// Unified entropy collection interface (updated to match implementation)
int collect_entropy_by_source(entropy_source_t source, unsigned char* entropy_buffer, size_t target_bytes, size_t* collected_bytes, int display_progress);
// Entropy quality calculation
double calculate_timing_quality(const entropy_collection_state_t* state);
double calculate_variety_quality(const entropy_collection_state_t* state);
unsigned char calculate_overall_quality(const entropy_collection_state_t* state);
double get_precise_time(void);
// Entropy processing and application
int derive_chacha20_params(const unsigned char* entropy_data, size_t entropy_size,
unsigned char key[32], unsigned char nonce[12]);
int add_entropy_to_pad(const char* pad_chksum, const unsigned char* entropy_data,
size_t entropy_size, int show_progress);
int add_entropy_direct_xor(const char* pad_chksum, const unsigned char* entropy_data,
size_t entropy_size, uint64_t pad_size, int display_progress);
int add_entropy_chacha20(const char* pad_chksum, const unsigned char* entropy_data,
size_t entropy_size, uint64_t pad_size, int display_progress);
int handle_add_entropy_to_pad(const char* pad_chksum);
// Enhanced entropy system helper functions
int update_pad_checksum_after_entropy(const char* old_chksum, char* new_chksum);
int rename_pad_files_safely(const char* old_chksum, const char* new_chksum);
int is_pad_unused(const char* pad_chksum);
////////////////////////////////////////////////////////////////////////////////
// DIRECTORY MANAGEMENT FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Directory handling and path management
int ensure_pads_directory(void);
void get_pad_path(const char* chksum, char* pad_path, char* state_path);
const char* get_files_directory(void);
void get_default_file_path(const char* filename, char* result_path, size_t result_size);
void get_directory_display(const char* file_path, char* result, size_t result_size);
////////////////////////////////////////////////////////////////////////////////
// UTILITY FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// General utility and helper functions
uint64_t parse_size_string(const char* size_str);
char* find_pad_by_prefix(const char* prefix);
int show_pad_info(const char* chksum);
void show_progress(uint64_t current, uint64_t total, time_t start_time);
////////////////////////////////////////////////////////////////////////////////
// FILE OPERATIONS
////////////////////////////////////////////////////////////////////////////////
// File state and checksum operations
int read_state_offset(const char* pad_chksum, uint64_t* offset);
int write_state_offset(const char* pad_chksum, uint64_t offset);
int calculate_checksum(const char* filename, char* checksum_hex);
int calculate_checksum_with_progress(const char* filename, char* checksum_hex, int display_progress, uint64_t file_size);
////////////////////////////////////////////////////////////////////////////////
// UNIVERSAL CORE FUNCTIONS FOR CODE CONSOLIDATION
////////////////////////////////////////////////////////////////////////////////
// Consolidated cryptographic operations
int universal_xor_operation(const unsigned char* data, size_t data_len,
const unsigned char* pad_data, unsigned char* result);
int parse_ascii_message(const char* message, char* chksum, uint64_t* offset, char* base64_data);
int load_pad_data(const char* pad_chksum, uint64_t offset, size_t length, unsigned char** pad_data);
int generate_ascii_armor(const char* chksum, uint64_t offset, const unsigned char* encrypted_data,
size_t data_length, char** ascii_output);
int validate_pad_integrity(const char* pad_path, const char* expected_chksum);
// Universal decrypt function - consolidates all decrypt operations
int universal_decrypt(const char* input_data, const char* output_target, decrypt_mode_t mode);
////////////////////////////////////////////////////////////////////////////////
// BASE64 ENCODING FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Custom base64 implementation
char* custom_base64_encode(const unsigned char* input, int length);
unsigned char* custom_base64_decode(const char* input, int* output_length);
////////////////////////////////////////////////////////////////////////////////
// TERMINAL UI FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Terminal dimension and UI functions
void init_terminal_dimensions(void);
void print_centered_header(const char* text, int pause_before_clear);
////////////////////////////////////////////////////////////////////////////////
// MENU SYSTEM FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Interactive menu interface functions
void show_main_menu(void);
int handle_generate_menu(void);
int handle_encrypt_menu(void);
int handle_decrypt_menu(void);
int handle_pads_menu(void);
int handle_text_encrypt(void);
int handle_file_encrypt(void);
int handle_verify_pad(const char* pad_chksum);
int handle_delete_pad(const char* pad_chksum);
////////////////////////////////////////////////////////////////////////////////
// ENHANCED INPUT FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Advanced input handling
int get_filename_with_default(const char* prompt, const char* default_path, char* result, size_t result_size);
////////////////////////////////////////////////////////////////////////////////
// PAD SELECTION FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Unified pad selection interface
char* select_pad_interactive(const char* title, const char* prompt, pad_filter_type_t filter_type, int allow_cancel);
////////////////////////////////////////////////////////////////////////////////
// USAGE AND HELP FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Help and usage display
void print_usage(const char* program_name);
#endif // OTP_H

504
src/archive.c Normal file
View File

@@ -0,0 +1,504 @@
#define _POSIX_C_SOURCE 200809L
#define _DEFAULT_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <unistd.h>
#include <sys/stat.h>
#include <dirent.h>
#include <time.h>
#include "main.h"
#include "microtar.h"
// Suppress warnings from miniz header
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-function"
#include "miniz.h"
#pragma GCC diagnostic pop
////////////////////////////////////////////////////////////////////////////////
// DIRECTORY ARCHIVING FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Helper function to recursively add directory contents to TAR archive
static int add_directory_to_tar(mtar_t* tar, const char* base_path, const char* relative_path) {
DIR* dir = opendir(base_path);
if (!dir) {
printf("Error: Cannot open directory '%s'\n", base_path);
return 1;
}
struct dirent* entry;
while ((entry = readdir(dir)) != NULL) {
// Skip . and ..
if (strcmp(entry->d_name, ".") == 0 || strcmp(entry->d_name, "..") == 0) {
continue;
}
// Build full path
char full_path[2048];
snprintf(full_path, sizeof(full_path), "%s/%s", base_path, entry->d_name);
// Build relative path for TAR
char tar_path[2048];
if (strlen(relative_path) > 0) {
snprintf(tar_path, sizeof(tar_path), "%s/%s", relative_path, entry->d_name);
} else {
snprintf(tar_path, sizeof(tar_path), "%s", entry->d_name);
}
struct stat st;
if (stat(full_path, &st) != 0) {
printf("Warning: Cannot stat '%s', skipping\n", full_path);
continue;
}
if (S_ISDIR(st.st_mode)) {
// Recursively add subdirectory
if (add_directory_to_tar(tar, full_path, tar_path) != 0) {
closedir(dir);
return 1;
}
} else if (S_ISREG(st.st_mode)) {
// Add regular file
FILE* fp = fopen(full_path, "rb");
if (!fp) {
printf("Warning: Cannot open '%s', skipping\n", full_path);
continue;
}
// Get file size
fseek(fp, 0, SEEK_END);
size_t file_size = ftell(fp);
fseek(fp, 0, SEEK_SET);
// Read file data
unsigned char* file_data = malloc(file_size);
if (!file_data) {
printf("Error: Memory allocation failed for '%s'\n", full_path);
fclose(fp);
closedir(dir);
return 1;
}
size_t bytes_read = fread(file_data, 1, file_size, fp);
fclose(fp);
if (bytes_read != file_size) {
printf("Warning: Could not read entire file '%s', skipping\n", full_path);
free(file_data);
continue;
}
// Write to TAR
if (mtar_write_file_header(tar, tar_path, file_size) != MTAR_ESUCCESS) {
printf("Error: Failed to write TAR header for '%s'\n", tar_path);
free(file_data);
closedir(dir);
return 1;
}
if (mtar_write_data(tar, file_data, file_size) != MTAR_ESUCCESS) {
printf("Error: Failed to write TAR data for '%s'\n", tar_path);
free(file_data);
closedir(dir);
return 1;
}
free(file_data);
}
}
closedir(dir);
return 0;
}
// Create TAR archive from directory
int create_tar_archive(const char* dir_path, const char* tar_output_path) {
mtar_t tar;
if (mtar_open(&tar, tar_output_path, "w") != MTAR_ESUCCESS) {
printf("Error: Cannot create TAR file '%s'\n", tar_output_path);
return 1;
}
// Get directory name for relative paths
char dir_name[512];
const char* last_slash = strrchr(dir_path, '/');
if (last_slash) {
strncpy(dir_name, last_slash + 1, sizeof(dir_name) - 1);
} else {
strncpy(dir_name, dir_path, sizeof(dir_name) - 1);
}
dir_name[sizeof(dir_name) - 1] = '\0';
// Add directory contents to TAR
int result = add_directory_to_tar(&tar, dir_path, dir_name);
// Finalize and close TAR
mtar_finalize(&tar);
mtar_close(&tar);
return result;
}
// Extract TAR archive to directory
int extract_tar_archive(const char* tar_path, const char* output_dir) {
mtar_t tar;
mtar_header_t header;
if (mtar_open(&tar, tar_path, "r") != MTAR_ESUCCESS) {
printf("Error: Cannot open TAR file '%s'\n", tar_path);
return 1;
}
// Create output directory if it doesn't exist
mkdir(output_dir, 0755);
// Extract each file
while (mtar_read_header(&tar, &header) == MTAR_ESUCCESS) {
char output_path[2048];
snprintf(output_path, sizeof(output_path), "%s/%s", output_dir, header.name);
// Create parent directories
char* last_slash = strrchr(output_path, '/');
if (last_slash) {
char parent_dir[2048];
strncpy(parent_dir, output_path, last_slash - output_path);
parent_dir[last_slash - output_path] = '\0';
// Create directories recursively
char* p = parent_dir;
while (*p) {
if (*p == '/') {
*p = '\0';
mkdir(parent_dir, 0755);
*p = '/';
}
p++;
}
mkdir(parent_dir, 0755);
}
// Extract file data
unsigned char* data = malloc(header.size);
if (!data) {
printf("Error: Memory allocation failed\n");
mtar_close(&tar);
return 1;
}
if (mtar_read_data(&tar, data, header.size) != MTAR_ESUCCESS) {
printf("Error: Failed to read data for '%s'\n", header.name);
free(data);
mtar_close(&tar);
return 1;
}
// Write to file
FILE* fp = fopen(output_path, "wb");
if (!fp) {
printf("Error: Cannot create file '%s'\n", output_path);
free(data);
mtar_close(&tar);
return 1;
}
fwrite(data, 1, header.size, fp);
fclose(fp);
free(data);
mtar_next(&tar);
}
mtar_close(&tar);
return 0;
}
////////////////////////////////////////////////////////////////////////////////
// COMPRESSION FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Compress file with gzip (miniz)
int compress_file_gzip(const char* input_path, const char* output_path) {
// Read input file
FILE* in = fopen(input_path, "rb");
if (!in) {
printf("Error: Cannot open input file '%s'\n", input_path);
return 1;
}
fseek(in, 0, SEEK_END);
size_t input_size = ftell(in);
fseek(in, 0, SEEK_SET);
unsigned char* input_data = malloc(input_size);
if (!input_data) {
printf("Error: Memory allocation failed\n");
fclose(in);
return 1;
}
size_t bytes_read = fread(input_data, 1, input_size, in);
fclose(in);
if (bytes_read != input_size) {
printf("Error: Failed to read input file\n");
free(input_data);
return 1;
}
// Compress with miniz
mz_ulong compressed_size = compressBound(input_size);
unsigned char* compressed_data = malloc(compressed_size);
if (!compressed_data) {
printf("Error: Memory allocation failed\n");
free(input_data);
return 1;
}
int result = compress2(compressed_data, &compressed_size,
input_data, input_size,
MZ_BEST_COMPRESSION);
free(input_data);
if (result != MZ_OK) {
printf("Error: Compression failed (error code: %d)\n", result);
free(compressed_data);
return 1;
}
// Write compressed data
FILE* out = fopen(output_path, "wb");
if (!out) {
printf("Error: Cannot create output file '%s'\n", output_path);
free(compressed_data);
return 1;
}
fwrite(compressed_data, 1, compressed_size, out);
fclose(out);
free(compressed_data);
return 0;
}
// Decompress gzip file (miniz)
int decompress_file_gzip(const char* input_path, const char* output_path) {
// Read compressed file
FILE* in = fopen(input_path, "rb");
if (!in) {
printf("Error: Cannot open compressed file '%s'\n", input_path);
return 1;
}
fseek(in, 0, SEEK_END);
size_t compressed_size = ftell(in);
fseek(in, 0, SEEK_SET);
unsigned char* compressed_data = malloc(compressed_size);
if (!compressed_data) {
printf("Error: Memory allocation failed\n");
fclose(in);
return 1;
}
size_t bytes_read = fread(compressed_data, 1, compressed_size, in);
fclose(in);
if (bytes_read != compressed_size) {
printf("Error: Failed to read compressed file\n");
free(compressed_data);
return 1;
}
// Estimate decompressed size (try multiple times if needed)
mz_ulong output_size = compressed_size * 10;
unsigned char* output_data = NULL;
int result;
for (int attempt = 0; attempt < 3; attempt++) {
output_data = realloc(output_data, output_size);
if (!output_data) {
printf("Error: Memory allocation failed\n");
free(compressed_data);
return 1;
}
mz_ulong temp_size = output_size;
result = uncompress(output_data, &temp_size, compressed_data, compressed_size);
if (result == MZ_OK) {
output_size = temp_size;
break;
} else if (result == MZ_BUF_ERROR) {
// Buffer too small, try larger
output_size *= 2;
} else {
printf("Error: Decompression failed (error code: %d)\n", result);
free(compressed_data);
free(output_data);
return 1;
}
}
free(compressed_data);
if (result != MZ_OK) {
printf("Error: Decompression failed after multiple attempts\n");
free(output_data);
return 1;
}
// Write decompressed data
FILE* out = fopen(output_path, "wb");
if (!out) {
printf("Error: Cannot create output file '%s'\n", output_path);
free(output_data);
return 1;
}
fwrite(output_data, 1, output_size, out);
fclose(out);
free(output_data);
return 0;
}
////////////////////////////////////////////////////////////////////////////////
// HIGH-LEVEL DIRECTORY ENCRYPTION/DECRYPTION
////////////////////////////////////////////////////////////////////////////////
// Encrypt directory: TAR → GZIP → Encrypt
int encrypt_directory(const char* dir_path, const char* pad_identifier, const char* output_file) {
char temp_tar[512];
char temp_gz[512];
int result = 0;
// Generate temporary file paths
snprintf(temp_tar, sizeof(temp_tar), "/tmp/otp_tar_%d.tar", getpid());
snprintf(temp_gz, sizeof(temp_gz), "/tmp/otp_gz_%d.tar.gz", getpid());
printf("Creating TAR archive...\n");
if (create_tar_archive(dir_path, temp_tar) != 0) {
printf("Error: Failed to create TAR archive\n");
return 1;
}
printf("Compressing archive...\n");
if (compress_file_gzip(temp_tar, temp_gz) != 0) {
printf("Error: Failed to compress archive\n");
unlink(temp_tar);
return 1;
}
printf("Encrypting compressed archive...\n");
result = encrypt_file(pad_identifier, temp_gz, output_file, 0);
// Cleanup temporary files
unlink(temp_tar);
unlink(temp_gz);
if (result == 0) {
printf("Directory encrypted successfully: %s\n", output_file);
}
return result;
}
// Detect if file is a compressed TAR archive
int is_compressed_tar_archive(const char* file_path) {
FILE* fp = fopen(file_path, "rb");
if (!fp) {
return 0;
}
unsigned char magic[512];
size_t bytes_read = fread(magic, 1, sizeof(magic), fp);
fclose(fp);
if (bytes_read < 2) {
return 0;
}
// Check for GZIP magic bytes (0x1f 0x8b)
if (magic[0] == 0x1f && magic[1] == 0x8b) {
return 1;
}
// Check for TAR magic ("ustar" at offset 257)
if (bytes_read >= 262 && memcmp(magic + 257, "ustar", 5) == 0) {
return 1;
}
return 0;
}
// Decrypt and extract directory: Decrypt → GUNZIP → Extract TAR
int decrypt_and_extract_directory(const char* encrypted_file, const char* output_dir) {
char temp_decrypted[512];
char temp_tar[512];
int result = 0;
// Generate temporary file paths
snprintf(temp_decrypted, sizeof(temp_decrypted), "/tmp/otp_decrypt_%d", getpid());
snprintf(temp_tar, sizeof(temp_tar), "/tmp/otp_tar_%d.tar", getpid());
printf("Decrypting file...\n");
if (decrypt_file(encrypted_file, temp_decrypted) != 0) {
printf("Error: Failed to decrypt file\n");
return 1;
}
// Check if it's compressed
FILE* fp = fopen(temp_decrypted, "rb");
if (!fp) {
printf("Error: Cannot open decrypted file\n");
unlink(temp_decrypted);
return 1;
}
unsigned char magic[2];
fread(magic, 1, 2, fp);
fclose(fp);
if (magic[0] == 0x1f && magic[1] == 0x8b) {
// GZIP compressed
printf("Decompressing archive...\n");
if (decompress_file_gzip(temp_decrypted, temp_tar) != 0) {
printf("Error: Failed to decompress archive\n");
unlink(temp_decrypted);
return 1;
}
unlink(temp_decrypted);
} else {
// Not compressed, assume it's already TAR
printf("File is not compressed, using as TAR directly...\n");
if (rename(temp_decrypted, temp_tar) != 0) {
printf("Error: Failed to rename decrypted file to TAR file\n");
unlink(temp_decrypted);
return 1;
}
}
// Verify TAR file exists before extraction
if (access(temp_tar, F_OK) != 0) {
printf("Error: TAR file does not exist at '%s'\n", temp_tar);
return 1;
}
printf("Extracting archive...\n");
result = extract_tar_archive(temp_tar, output_dir);
// Cleanup
unlink(temp_tar);
if (result == 0) {
printf("Directory extracted successfully to: %s\n", output_dir);
}
return result;
}

View File

@@ -5,7 +5,7 @@
#include <stdio.h> #include <stdio.h>
#include <time.h> #include <time.h>
#include <unistd.h> #include <unistd.h>
#include "../include/otp.h" #include "main.h"
#define PROGRESS_UPDATE_INTERVAL (64 * 1024 * 1024) // 64MB intervals #define PROGRESS_UPDATE_INTERVAL (64 * 1024 * 1024) // 64MB intervals
@@ -198,7 +198,7 @@ int generate_ascii_armor(const char* chksum, uint64_t offset, const unsigned cha
strcpy(*ascii_output, "-----BEGIN OTP MESSAGE-----\n"); strcpy(*ascii_output, "-----BEGIN OTP MESSAGE-----\n");
char temp_line[256]; char temp_line[256];
snprintf(temp_line, sizeof(temp_line), "Version: v0.3.16\n"); snprintf(temp_line, sizeof(temp_line), "Version: %s\n", OTP_VERSION);
strcat(*ascii_output, temp_line); strcat(*ascii_output, temp_line);
snprintf(temp_line, sizeof(temp_line), "Pad-ChkSum: %s\n", chksum); snprintf(temp_line, sizeof(temp_line), "Pad-ChkSum: %s\n", chksum);
@@ -297,7 +297,6 @@ int encrypt_text(const char* pad_identifier, const char* input_text) {
} }
char text_buffer[MAX_INPUT_SIZE]; char text_buffer[MAX_INPUT_SIZE];
char chksum_hex[MAX_HASH_LENGTH];
uint64_t current_offset; uint64_t current_offset;
char pad_path[MAX_HASH_LENGTH + 20]; char pad_path[MAX_HASH_LENGTH + 20];
@@ -327,12 +326,8 @@ int encrypt_text(const char* pad_identifier, const char* input_text) {
} }
} }
// Calculate XOR checksum of pad file // Use pad_chksum directly - it's already the checksum from the filename
if (calculate_checksum(pad_path, chksum_hex) != 0) { // No need to recalculate by reading the entire pad file
printf("Error: Cannot calculate pad checksum\n");
free(pad_chksum);
return 1;
}
// Get input text - either from parameter or user input // Get input text - either from parameter or user input
if (input_text != NULL) { if (input_text != NULL) {
@@ -406,18 +401,40 @@ int encrypt_text(const char* pad_identifier, const char* input_text) {
return 1; return 1;
} }
// Check if we have enough pad space // Calculate chunk size for padding (exponential bucketing)
struct stat pad_stat; size_t chunk_size = calculate_chunk_size(input_len);
if (stat(pad_path, &pad_stat) != 0) {
printf("Error: Cannot get pad file size\n"); // Allocate buffer for padded message
unsigned char* padded_buffer = malloc(chunk_size);
if (!padded_buffer) {
printf("Error: Memory allocation failed\n");
free(pad_chksum);
return 1;
}
// Copy message to buffer and apply padding
memcpy(padded_buffer, text_buffer, input_len);
if (apply_padme_padding(padded_buffer, input_len, chunk_size) != 0) {
printf("Error: Failed to apply padding\n");
free(padded_buffer);
free(pad_chksum); free(pad_chksum);
return 1; return 1;
} }
if (current_offset + input_len > (uint64_t)pad_stat.st_size) { // Check if we have enough pad space (now using chunk_size instead of input_len)
struct stat pad_stat;
if (stat(pad_path, &pad_stat) != 0) {
printf("Error: Cannot get pad file size\n");
free(padded_buffer);
free(pad_chksum);
return 1;
}
if (current_offset + chunk_size > (uint64_t)pad_stat.st_size) {
printf("Error: Not enough pad space remaining\n"); printf("Error: Not enough pad space remaining\n");
printf("Need: %lu bytes, Available: %lu bytes\n", printf("Need: %lu bytes, Available: %lu bytes\n",
input_len, (uint64_t)pad_stat.st_size - current_offset); chunk_size, (uint64_t)pad_stat.st_size - current_offset);
free(padded_buffer);
free(pad_chksum); free(pad_chksum);
return 1; return 1;
} }
@@ -437,37 +454,40 @@ int encrypt_text(const char* pad_identifier, const char* input_text) {
return 1; return 1;
} }
unsigned char* pad_data = malloc(input_len); unsigned char* pad_data = malloc(chunk_size);
if (fread(pad_data, 1, input_len, pad_file) != input_len) { if (fread(pad_data, 1, chunk_size, pad_file) != chunk_size) {
printf("Error: Cannot read pad data\n"); printf("Error: Cannot read pad data\n");
free(pad_data); free(pad_data);
fclose(pad_file); fclose(pad_file);
free(padded_buffer);
free(pad_chksum); free(pad_chksum);
return 1; return 1;
} }
fclose(pad_file); fclose(pad_file);
// Use universal XOR operation for encryption // Use universal XOR operation for encryption (now with padded data)
unsigned char* ciphertext = malloc(input_len); unsigned char* ciphertext = malloc(chunk_size);
if (universal_xor_operation((const unsigned char*)text_buffer, input_len, pad_data, ciphertext) != 0) { if (universal_xor_operation(padded_buffer, chunk_size, pad_data, ciphertext) != 0) {
printf("Error: Encryption operation failed\n"); printf("Error: Encryption operation failed\n");
free(pad_data); free(pad_data);
free(ciphertext); free(ciphertext);
free(padded_buffer);
free(pad_chksum); free(pad_chksum);
return 1; return 1;
} }
// Update state offset // Update state offset (now using chunk_size)
if (write_state_offset(pad_chksum, current_offset + input_len) != 0) { if (write_state_offset(pad_chksum, current_offset + chunk_size) != 0) {
printf("Warning: Failed to update state file\n"); printf("Warning: Failed to update state file\n");
} }
// Use universal ASCII armor generator // Use universal ASCII armor generator (now with chunk_size)
char* ascii_output; char* ascii_output;
if (generate_ascii_armor(chksum_hex, current_offset, ciphertext, input_len, &ascii_output) != 0) { if (generate_ascii_armor(pad_chksum, current_offset, ciphertext, chunk_size, &ascii_output) != 0) {
printf("Error: Failed to generate ASCII armor\n"); printf("Error: Failed to generate ASCII armor\n");
free(pad_data); free(pad_data);
free(ciphertext); free(ciphertext);
free(padded_buffer);
free(pad_chksum); free(pad_chksum);
return 1; return 1;
} }
@@ -484,6 +504,7 @@ int encrypt_text(const char* pad_identifier, const char* input_text) {
// Cleanup // Cleanup
free(pad_data); free(pad_data);
free(ciphertext); free(ciphertext);
free(padded_buffer);
free(ascii_output); free(ascii_output);
free(pad_chksum); free(pad_chksum);
@@ -592,36 +613,14 @@ int universal_decrypt(const char* input_data, const char* output_target, decrypt
return 1; return 1;
} }
// Validate pad integrity // Pad integrity validation disabled for performance
int integrity_result = validate_pad_integrity(pad_path, stored_chksum); // The checksum is already verified by matching the filename
if (integrity_result == 3) { // If you need to verify pad integrity, the pad file would need to be read entirely
if (mode == DECRYPT_MODE_SILENT) { // which is very slow for large pads (multi-GB files)
fprintf(stderr, "Error: Pad integrity check failed!\n");
return 1; // Skip integrity check - trust the filename checksum
} else if (mode == DECRYPT_MODE_INTERACTIVE) { if (mode == DECRYPT_MODE_INTERACTIVE || mode == DECRYPT_MODE_FILE_TO_TEXT) {
printf("Warning: Pad integrity check failed!\n"); printf("Using pad: %s\n", stored_chksum);
printf("Expected: %s\n", stored_chksum);
printf("Continue anyway? (y/N): ");
fflush(stdout);
char response[10];
if (fgets(response, sizeof(response), stdin) == NULL ||
(response[0] != 'y' && response[0] != 'Y')) {
printf("Decryption aborted.\n");
return 1;
}
}
} else if (integrity_result != 0) {
if (mode == DECRYPT_MODE_SILENT) {
fprintf(stderr, "Error: Cannot verify pad integrity\n");
} else {
printf("Error: Cannot verify pad integrity\n");
}
return 1;
} else {
if (mode == DECRYPT_MODE_INTERACTIVE || mode == DECRYPT_MODE_FILE_TO_TEXT) {
printf("Pad integrity: VERIFIED\n");
}
} }
// Decode base64 ciphertext // Decode base64 ciphertext
@@ -659,6 +658,22 @@ int universal_decrypt(const char* input_data, const char* output_target, decrypt
return 1; return 1;
} }
// Remove padding to get actual message
size_t actual_msg_len;
if (remove_padme_padding(ciphertext, ciphertext_len, &actual_msg_len) != 0) {
if (mode == DECRYPT_MODE_SILENT) {
fprintf(stderr, "Error: Invalid padding - message may be corrupted\n");
} else {
printf("Error: Invalid padding - message may be corrupted\n");
}
free(ciphertext);
free(pad_data);
return 1;
}
// Update ciphertext_len to actual message length
ciphertext_len = actual_msg_len;
// Output based on mode // Output based on mode
if (mode == DECRYPT_MODE_FILE_TO_FILE) { if (mode == DECRYPT_MODE_FILE_TO_FILE) {
// Write to output file // Write to output file
@@ -746,7 +761,6 @@ int encrypt_file(const char* pad_identifier, const char* input_file, const char*
return 1; return 1;
} }
char chksum_hex[MAX_HASH_LENGTH];
uint64_t current_offset; uint64_t current_offset;
char pad_path[MAX_HASH_LENGTH + 20]; char pad_path[MAX_HASH_LENGTH + 20];
@@ -768,6 +782,9 @@ int encrypt_file(const char* pad_identifier, const char* input_file, const char*
return 1; return 1;
} }
// Calculate chunk size for padding (exponential bucketing)
size_t chunk_size = calculate_chunk_size(file_size);
// Check if pad file exists // Check if pad file exists
if (access(pad_path, R_OK) != 0) { if (access(pad_path, R_OK) != 0) {
printf("Error: Pad file %s not found\n", pad_path); printf("Error: Pad file %s not found\n", pad_path);
@@ -791,12 +808,8 @@ int encrypt_file(const char* pad_identifier, const char* input_file, const char*
} }
} }
// Calculate XOR checksum of pad file // Use pad_chksum directly - it's already the checksum from the filename
if (calculate_checksum(pad_path, chksum_hex) != 0) { // No need to recalculate by reading the entire pad file
printf("Error: Cannot calculate pad checksum\n");
free(pad_chksum);
return 1;
}
// Check if we have enough pad space // Check if we have enough pad space
struct stat pad_stat; struct stat pad_stat;
@@ -806,10 +819,10 @@ int encrypt_file(const char* pad_identifier, const char* input_file, const char*
return 1; return 1;
} }
if (current_offset + file_size > (uint64_t)pad_stat.st_size) { if (current_offset + chunk_size > (uint64_t)pad_stat.st_size) {
printf("Error: Not enough pad space remaining\n"); printf("Error: Not enough pad space remaining\n");
printf("Need: %lu bytes, Available: %lu bytes\n", printf("Need: %lu bytes (file: %lu + padding), Available: %lu bytes\n",
file_size, (uint64_t)pad_stat.st_size - current_offset); chunk_size, file_size, (uint64_t)pad_stat.st_size - current_offset);
free(pad_chksum); free(pad_chksum);
return 1; return 1;
} }
@@ -854,66 +867,93 @@ int encrypt_file(const char* pad_identifier, const char* input_file, const char*
return 1; return 1;
} }
// Read and encrypt file // Allocate buffer for padded file data
unsigned char buffer[64 * 1024]; unsigned char* file_data = malloc(file_size);
unsigned char pad_buffer[64 * 1024]; if (!file_data) {
unsigned char* encrypted_data = malloc(file_size); printf("Error: Memory allocation failed\n");
uint64_t bytes_processed = 0; fclose(input_fp);
fclose(pad_file);
free(pad_chksum);
return 1;
}
printf("Encrypting %s...\n", input_file); printf("Encrypting %s...\n", input_file);
while (bytes_processed < file_size) { // Read entire file
uint64_t chunk_size = sizeof(buffer); if (fread(file_data, 1, file_size, input_fp) != file_size) {
if (file_size - bytes_processed < chunk_size) { printf("Error: Cannot read input file\n");
chunk_size = file_size - bytes_processed; free(file_data);
} fclose(input_fp);
fclose(pad_file);
// Read file data free(pad_chksum);
if (fread(buffer, 1, chunk_size, input_fp) != chunk_size) { return 1;
printf("Error: Cannot read input file data\n");
free(encrypted_data);
fclose(input_fp);
fclose(pad_file);
free(pad_chksum);
return 1;
}
// Read pad data
if (fread(pad_buffer, 1, chunk_size, pad_file) != chunk_size) {
printf("Error: Cannot read pad data\n");
free(encrypted_data);
fclose(input_fp);
fclose(pad_file);
free(pad_chksum);
return 1;
}
// Use universal XOR operation for encryption
if (universal_xor_operation(buffer, chunk_size, pad_buffer, &encrypted_data[bytes_processed]) != 0) {
printf("Error: Encryption operation failed\n");
free(encrypted_data);
fclose(input_fp);
fclose(pad_file);
free(pad_chksum);
return 1;
}
bytes_processed += chunk_size;
// Show progress for large files (> 10MB)
if (file_size > 10 * 1024 * 1024 && bytes_processed % (1024 * 1024) == 0) {
// show_progress(bytes_processed, file_size, start_time); // MOVED TO src/util.c
}
} }
if (file_size > 10 * 1024 * 1024) {
// show_progress(file_size, file_size, start_time); // MOVED TO src/util.c
printf("\n");
}
fclose(input_fp); fclose(input_fp);
// Allocate buffer for padded data
unsigned char* padded_data = malloc(chunk_size);
if (!padded_data) {
printf("Error: Memory allocation failed\n");
free(file_data);
fclose(pad_file);
free(pad_chksum);
return 1;
}
// Copy file data and apply padding
memcpy(padded_data, file_data, file_size);
free(file_data);
if (apply_padme_padding(padded_data, file_size, chunk_size) != 0) {
printf("Error: Failed to apply padding\n");
free(padded_data);
fclose(pad_file);
free(pad_chksum);
return 1;
}
// Read pad data
unsigned char* pad_data = malloc(chunk_size);
if (!pad_data) {
printf("Error: Memory allocation failed\n");
free(padded_data);
fclose(pad_file);
free(pad_chksum);
return 1;
}
if (fread(pad_data, 1, chunk_size, pad_file) != chunk_size) {
printf("Error: Cannot read pad data\n");
free(padded_data);
free(pad_data);
fclose(pad_file);
free(pad_chksum);
return 1;
}
fclose(pad_file); fclose(pad_file);
// Encrypt padded data
unsigned char* encrypted_data = malloc(chunk_size);
if (!encrypted_data) {
printf("Error: Memory allocation failed\n");
free(padded_data);
free(pad_data);
free(pad_chksum);
return 1;
}
if (universal_xor_operation(padded_data, chunk_size, pad_data, encrypted_data) != 0) {
printf("Error: Encryption operation failed\n");
free(padded_data);
free(pad_data);
free(encrypted_data);
free(pad_chksum);
return 1;
}
free(padded_data);
free(pad_data);
// Write output file // Write output file
if (ascii_armor) { if (ascii_armor) {
// ASCII armored format - same as message format // ASCII armored format - same as message format
@@ -925,9 +965,9 @@ int encrypt_file(const char* pad_identifier, const char* input_file, const char*
return 1; return 1;
} }
// Use universal ASCII armor generator // Use universal ASCII armor generator (now with chunk_size)
char* ascii_output; char* ascii_output;
if (generate_ascii_armor(chksum_hex, current_offset, encrypted_data, file_size, &ascii_output) != 0) { if (generate_ascii_armor(pad_chksum, current_offset, encrypted_data, chunk_size, &ascii_output) != 0) {
printf("Error: Failed to generate ASCII armor\n"); printf("Error: Failed to generate ASCII armor\n");
fclose(output_fp); fclose(output_fp);
free(encrypted_data); free(encrypted_data);
@@ -961,7 +1001,7 @@ int encrypt_file(const char* pad_identifier, const char* input_file, const char*
// Pad checksum: 32 bytes (binary) // Pad checksum: 32 bytes (binary)
unsigned char pad_chksum_bin[32]; unsigned char pad_chksum_bin[32];
for (int i = 0; i < 32; i++) { for (int i = 0; i < 32; i++) {
sscanf(chksum_hex + i*2, "%2hhx", &pad_chksum_bin[i]); sscanf(pad_chksum + i*2, "%2hhx", &pad_chksum_bin[i]);
} }
fwrite(pad_chksum_bin, 1, 32, output_fp); fwrite(pad_chksum_bin, 1, 32, output_fp);
@@ -973,17 +1013,17 @@ int encrypt_file(const char* pad_identifier, const char* input_file, const char*
uint32_t file_mode = input_stat.st_mode; uint32_t file_mode = input_stat.st_mode;
fwrite(&file_mode, sizeof(uint32_t), 1, output_fp); fwrite(&file_mode, sizeof(uint32_t), 1, output_fp);
// File size: 8 bytes // File size: 8 bytes (original file size, not padded)
fwrite(&file_size, sizeof(uint64_t), 1, output_fp); fwrite(&file_size, sizeof(uint64_t), 1, output_fp);
// Encrypted data // Encrypted data (padded)
fwrite(encrypted_data, 1, file_size, output_fp); fwrite(encrypted_data, 1, chunk_size, output_fp);
fclose(output_fp); fclose(output_fp);
} }
// Update state offset // Update state offset (now using chunk_size)
if (write_state_offset(pad_chksum, current_offset + file_size) != 0) { if (write_state_offset(pad_chksum, current_offset + chunk_size) != 0) {
printf("Warning: Failed to update state file\n"); printf("Warning: Failed to update state file\n");
} }
@@ -1044,14 +1084,14 @@ int decrypt_binary_file(FILE* input_fp, const char* output_file) {
unsigned char pad_chksum_bin[32]; unsigned char pad_chksum_bin[32];
uint64_t pad_offset; uint64_t pad_offset;
uint32_t file_mode; uint32_t file_mode;
uint64_t file_size; uint64_t original_file_size;
if (fread(magic, 1, 4, input_fp) != 4 || if (fread(magic, 1, 4, input_fp) != 4 ||
fread(&version, sizeof(uint16_t), 1, input_fp) != 1 || fread(&version, sizeof(uint16_t), 1, input_fp) != 1 ||
fread(pad_chksum_bin, 1, 32, input_fp) != 32 || fread(pad_chksum_bin, 1, 32, input_fp) != 32 ||
fread(&pad_offset, sizeof(uint64_t), 1, input_fp) != 1 || fread(&pad_offset, sizeof(uint64_t), 1, input_fp) != 1 ||
fread(&file_mode, sizeof(uint32_t), 1, input_fp) != 1 || fread(&file_mode, sizeof(uint32_t), 1, input_fp) != 1 ||
fread(&file_size, sizeof(uint64_t), 1, input_fp) != 1) { fread(&original_file_size, sizeof(uint64_t), 1, input_fp) != 1) {
printf("Error: Cannot read binary header\n"); printf("Error: Cannot read binary header\n");
fclose(input_fp); fclose(input_fp);
return 1; return 1;
@@ -1071,7 +1111,7 @@ int decrypt_binary_file(FILE* input_fp, const char* output_file) {
pad_chksum_hex[64] = '\0'; pad_chksum_hex[64] = '\0';
printf("Decrypting binary file...\n"); printf("Decrypting binary file...\n");
printf("File size: %lu bytes\n", file_size); printf("Original file size: %lu bytes\n", original_file_size);
// Check if we have the required pad // Check if we have the required pad
char pad_path[MAX_HASH_LENGTH + 20]; char pad_path[MAX_HASH_LENGTH + 20];
@@ -1096,9 +1136,18 @@ int decrypt_binary_file(FILE* input_fp, const char* output_file) {
output_file = default_output; output_file = default_output;
} }
// Read encrypted data // Calculate chunk size (encrypted data is padded)
unsigned char* encrypted_data = malloc(file_size); size_t chunk_size = calculate_chunk_size(original_file_size);
if (fread(encrypted_data, 1, file_size, input_fp) != file_size) {
// Read encrypted (padded) data
unsigned char* encrypted_data = malloc(chunk_size);
if (!encrypted_data) {
printf("Error: Memory allocation failed\n");
fclose(input_fp);
return 1;
}
if (fread(encrypted_data, 1, chunk_size, input_fp) != chunk_size) {
printf("Error: Cannot read encrypted data\n"); printf("Error: Cannot read encrypted data\n");
free(encrypted_data); free(encrypted_data);
fclose(input_fp); fclose(input_fp);
@@ -1121,8 +1170,15 @@ int decrypt_binary_file(FILE* input_fp, const char* output_file) {
return 1; return 1;
} }
unsigned char* pad_data = malloc(file_size); unsigned char* pad_data = malloc(chunk_size);
if (fread(pad_data, 1, file_size, pad_file) != file_size) { if (!pad_data) {
printf("Error: Memory allocation failed\n");
free(encrypted_data);
fclose(pad_file);
return 1;
}
if (fread(pad_data, 1, chunk_size, pad_file) != chunk_size) {
printf("Error: Cannot read pad data\n"); printf("Error: Cannot read pad data\n");
free(encrypted_data); free(encrypted_data);
free(pad_data); free(pad_data);
@@ -1132,26 +1188,40 @@ int decrypt_binary_file(FILE* input_fp, const char* output_file) {
fclose(pad_file); fclose(pad_file);
// Use universal XOR operation for decryption // Use universal XOR operation for decryption
if (universal_xor_operation(encrypted_data, file_size, pad_data, encrypted_data) != 0) { if (universal_xor_operation(encrypted_data, chunk_size, pad_data, encrypted_data) != 0) {
printf("Error: Decryption operation failed\n"); printf("Error: Decryption operation failed\n");
free(encrypted_data); free(encrypted_data);
free(pad_data); free(pad_data);
return 1; return 1;
} }
// Write decrypted file free(pad_data);
// Remove padding to get original file
size_t actual_file_size;
if (remove_padme_padding(encrypted_data, chunk_size, &actual_file_size) != 0) {
printf("Error: Invalid padding - file may be corrupted\n");
free(encrypted_data);
return 1;
}
// Verify the actual size matches the stored original size
if (actual_file_size != original_file_size) {
printf("Warning: Decrypted size (%lu) doesn't match stored size (%lu)\n",
actual_file_size, original_file_size);
}
// Write decrypted file (using actual_file_size)
FILE* output_fp = fopen(output_file, "wb"); FILE* output_fp = fopen(output_file, "wb");
if (!output_fp) { if (!output_fp) {
printf("Error: Cannot create output file %s\n", output_file); printf("Error: Cannot create output file %s\n", output_file);
free(encrypted_data); free(encrypted_data);
free(pad_data);
return 1; return 1;
} }
if (fwrite(encrypted_data, 1, file_size, output_fp) != file_size) { if (fwrite(encrypted_data, 1, actual_file_size, output_fp) != actual_file_size) {
printf("Error: Cannot write decrypted data\n"); printf("Error: Cannot write decrypted data\n");
free(encrypted_data); free(encrypted_data);
free(pad_data);
fclose(output_fp); fclose(output_fp);
return 1; return 1;
} }
@@ -1165,12 +1235,14 @@ int decrypt_binary_file(FILE* input_fp, const char* output_file) {
printf("File decrypted successfully: %s\n", output_file); printf("File decrypted successfully: %s\n", output_file);
printf("Restored permissions and metadata\n"); printf("Restored permissions and metadata\n");
// Pause before returning to menu to let user see the success message // Only pause if output is not a temporary file (directory decryption uses /tmp/)
print_centered_header("File Decryption Complete", 1); if (strncmp(output_file, "/tmp/", 5) != 0) {
// Pause before returning to menu to let user see the success message
print_centered_header("File Decryption Complete", 1);
}
// Cleanup // Cleanup
free(encrypted_data); free(encrypted_data);
free(pad_data);
return 0; return 0;
} }

View File

@@ -15,8 +15,8 @@
#include <termios.h> #include <termios.h>
#include <fcntl.h> #include <fcntl.h>
#include <math.h> #include <math.h>
#include "../nostr_chacha20.h" #include "nostr_chacha20.h"
#include "../include/otp.h" #include "main.h"
// In-place pad entropy addition using Chacha20 or direct XOR // In-place pad entropy addition using Chacha20 or direct XOR
@@ -82,7 +82,7 @@ int add_entropy_direct_xor(const char* pad_chksum, const unsigned char* entropy_
if (display_progress) { if (display_progress) {
printf("Adding entropy to pad using direct XOR...\n"); printf("Adding entropy to pad using direct XOR...\n");
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1024.0*1024.0*1024.0), pad_size); printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1000.0*1000.0*1000.0), pad_size);
printf("Entropy size: %zu bytes\n", entropy_size); printf("Entropy size: %zu bytes\n", entropy_size);
} }
@@ -212,15 +212,29 @@ int add_entropy_chacha20(const char* pad_chksum, const unsigned char* entropy_da
if (display_progress) { if (display_progress) {
printf("Adding entropy to pad using Chacha20...\n"); printf("Adding entropy to pad using Chacha20...\n");
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1024.0*1024.0*1024.0), pad_size); printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1000.0*1000.0*1000.0), pad_size);
} }
// Process pad in chunks // Process pad in chunks
unsigned char buffer[64 * 1024]; // 64KB chunks unsigned char buffer[64 * 1024]; // 64KB chunks
unsigned char keystream[64 * 1024]; unsigned char keystream[64 * 1024];
uint64_t offset = 0; uint64_t offset = 0;
uint32_t counter = 0; uint32_t counter_low = 0;
uint32_t counter_high = 0;
time_t start_time = time(NULL); time_t start_time = time(NULL);
// Use extended counter for pads larger than 256GB
// 256GB = 2^32 blocks * 64 bytes = 274,877,906,944 bytes
int use_extended = (pad_size > 274877906944ULL);
// For extended mode, use reduced 8-byte nonce
unsigned char nonce_reduced[8];
if (use_extended) {
memcpy(nonce_reduced, nonce + 4, 8);
if (display_progress) {
printf("Using extended counter mode for large pad (>256GB)\n");
}
}
while (offset < pad_size) { while (offset < pad_size) {
size_t chunk_size = sizeof(buffer); size_t chunk_size = sizeof(buffer);
@@ -237,7 +251,15 @@ int add_entropy_chacha20(const char* pad_chksum, const unsigned char* entropy_da
} }
// Generate keystream for this chunk // Generate keystream for this chunk
if (chacha20_encrypt(key, counter, nonce, buffer, keystream, chunk_size) != 0) { int chacha_result;
if (use_extended) {
chacha_result = chacha20_encrypt_extended(key, counter_low, counter_high,
nonce_reduced, buffer, keystream, chunk_size);
} else {
chacha_result = chacha20_encrypt(key, counter_low, nonce, buffer, keystream, chunk_size);
}
if (chacha_result != 0) {
printf("Error: Chacha20 keystream generation failed\n"); printf("Error: Chacha20 keystream generation failed\n");
fclose(pad_file); fclose(pad_file);
chmod(pad_path, S_IRUSR); chmod(pad_path, S_IRUSR);
@@ -265,7 +287,16 @@ int add_entropy_chacha20(const char* pad_chksum, const unsigned char* entropy_da
} }
offset += chunk_size; offset += chunk_size;
counter += (chunk_size + 63) / 64; // Round up for block count
// Update counters
uint32_t blocks = (chunk_size + 63) / 64; // Round up for block count
uint32_t old_counter_low = counter_low;
counter_low += blocks;
// Check for overflow and increment high counter
if (counter_low < old_counter_low) {
counter_high++;
}
// Show progress for large pads // Show progress for large pads
if (display_progress && offset % (64 * 1024 * 1024) == 0) { // Every 64MB if (display_progress && offset % (64 * 1024 * 1024) == 0) { // Every 64MB
@@ -282,7 +313,8 @@ int add_entropy_chacha20(const char* pad_chksum, const unsigned char* entropy_da
if (display_progress) { if (display_progress) {
show_progress(pad_size, pad_size, start_time); show_progress(pad_size, pad_size, start_time);
printf("\n✓ Entropy successfully added to pad using Chacha20\n"); printf("\n✓ Entropy successfully added to pad using Chacha20%s\n",
use_extended ? " (extended counter)" : "");
printf("✓ Pad integrity maintained\n"); printf("✓ Pad integrity maintained\n");
printf("✓ %zu bytes of entropy distributed across entire pad\n", entropy_size); printf("✓ %zu bytes of entropy distributed across entire pad\n", entropy_size);
printf("✓ Pad restored to read-only mode\n"); printf("✓ Pad restored to read-only mode\n");
@@ -457,20 +489,17 @@ int derive_chacha20_params(const unsigned char* entropy_data, size_t entropy_siz
return 0; // Success return 0; // Success
} }
// Collect entropy from binary file // Get file path and size information for entropy collection
int collect_file_entropy(unsigned char* entropy_buffer, size_t target_bytes, int get_file_entropy_info(char* file_path, size_t max_path_len, size_t* file_size, int display_progress) {
size_t* collected_bytes, int display_progress) {
if (display_progress) { if (display_progress) {
print_centered_header("File Entropy Collection", 0); print_centered_header("File Entropy Collection", 0);
printf("Load entropy from binary file (.bin format)\n"); printf("Load entropy from binary file (.bin format)\n");
printf("Target: %zu bytes\n", target_bytes);
} }
printf("Enter path to binary entropy file: "); printf("Enter path to binary entropy file: ");
fflush(stdout); fflush(stdout);
char file_path[512]; if (!fgets(file_path, max_path_len, stdin)) {
if (!fgets(file_path, sizeof(file_path), stdin)) {
printf("Error: Failed to read input\n"); printf("Error: Failed to read input\n");
return 1; return 1;
} }
@@ -490,12 +519,31 @@ int collect_file_entropy(unsigned char* entropy_buffer, size_t target_bytes,
return 1; return 1;
} }
size_t file_size = file_stat.st_size; *file_size = file_stat.st_size;
if (file_size == 0) { if (*file_size == 0) {
printf("Error: File is empty\n"); printf("Error: File is empty\n");
return 1; return 1;
} }
if (display_progress) {
printf("✓ File found: %s\n", file_path);
printf(" Size: %zu bytes\n", *file_size);
}
return 0; // Success
}
// Collect entropy from binary file (legacy function for backward compatibility)
int collect_file_entropy(unsigned char* entropy_buffer, size_t target_bytes,
size_t* collected_bytes, int display_progress) {
char file_path[512];
size_t file_size;
// Get file path and size first
if (get_file_entropy_info(file_path, sizeof(file_path), &file_size, display_progress) != 0) {
return 1;
}
if (file_size < target_bytes) { if (file_size < target_bytes) {
printf("Warning: File size (%zu bytes) is smaller than target (%zu bytes)\n", printf("Warning: File size (%zu bytes) is smaller than target (%zu bytes)\n",
file_size, target_bytes); file_size, target_bytes);
@@ -544,6 +592,131 @@ int collect_file_entropy(unsigned char* entropy_buffer, size_t target_bytes,
return 0; // Success return 0; // Success
} }
// Add file entropy directly to pad using streaming (for large files)
int add_file_entropy_streaming(const char* pad_chksum, const char* file_path, size_t file_size, int display_progress) {
// Get pad file path
char pad_path[1024];
char state_path[1024];
get_pad_path(pad_chksum, pad_path, state_path);
// Check if pad exists and get size
struct stat pad_stat;
if (stat(pad_path, &pad_stat) != 0) {
printf("Error: Pad file not found: %s\n", pad_path);
return 1;
}
uint64_t pad_size = pad_stat.st_size;
// Open entropy file for reading
FILE* entropy_file = fopen(file_path, "rb");
if (!entropy_file) {
printf("Error: Cannot open entropy file '%s' for reading\n", file_path);
return 1;
}
// Open pad file for read/write
FILE* pad_file = fopen(pad_path, "r+b");
if (!pad_file) {
printf("Error: Cannot open pad file for modification: %s\n", pad_path);
fclose(entropy_file);
return 1;
}
if (display_progress) {
printf("Adding entropy to pad using streaming direct XOR...\n");
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1000.0*1000.0*1000.0), pad_size);
printf("Entropy file: %.2f GB (%zu bytes)\n", (double)file_size / (1000.0*1000.0*1000.0), file_size);
}
// Process in chunks
unsigned char pad_buffer[64 * 1024];
unsigned char entropy_buffer[64 * 1024];
uint64_t offset = 0;
size_t entropy_offset = 0;
time_t start_time = time(NULL);
while (offset < pad_size) {
size_t chunk_size = sizeof(pad_buffer);
if (pad_size - offset < chunk_size) {
chunk_size = pad_size - offset;
}
// Read current pad data
if (fread(pad_buffer, 1, chunk_size, pad_file) != chunk_size) {
printf("Error: Cannot read pad data at offset %lu\n", offset);
fclose(entropy_file);
fclose(pad_file);
return 1;
}
// Read entropy data (wrap around if file smaller than pad)
size_t entropy_read = 0;
while (entropy_read < chunk_size) {
size_t to_read = chunk_size - entropy_read;
if (to_read > sizeof(entropy_buffer)) {
to_read = sizeof(entropy_buffer);
}
size_t read_bytes = fread(entropy_buffer, 1, to_read, entropy_file);
if (read_bytes == 0) {
// Reached end of entropy file, wrap around
fseek(entropy_file, 0, SEEK_SET);
entropy_offset = 0;
read_bytes = fread(entropy_buffer, 1, to_read, entropy_file);
if (read_bytes == 0) {
printf("Error: Cannot read from entropy file\n");
fclose(entropy_file);
fclose(pad_file);
return 1;
}
}
// XOR this chunk
for (size_t i = 0; i < read_bytes; i++) {
pad_buffer[entropy_read + i] ^= entropy_buffer[i];
}
entropy_read += read_bytes;
entropy_offset += read_bytes;
}
// Seek back and write modified data
if (fseek(pad_file, offset, SEEK_SET) != 0) {
printf("Error: Cannot seek to offset %lu\n", offset);
fclose(entropy_file);
fclose(pad_file);
return 1;
}
if (fwrite(pad_buffer, 1, chunk_size, pad_file) != chunk_size) {
printf("Error: Cannot write modified pad data\n");
fclose(entropy_file);
fclose(pad_file);
return 1;
}
offset += chunk_size;
// Show progress for large pads
if (display_progress && offset % (64 * 1024 * 1024) == 0) {
show_progress(offset, pad_size, start_time);
}
}
fclose(entropy_file);
fclose(pad_file);
if (display_progress) {
show_progress(pad_size, pad_size, start_time);
printf("\n✓ Entropy successfully added to pad using streaming direct XOR\n");
printf("✓ Pad integrity maintained\n");
printf("✓ %zu bytes of entropy distributed across entire pad\n", file_size);
}
return 0;
}
// Collect entropy by source type with unified interface // Collect entropy by source type with unified interface
int collect_entropy_by_source(entropy_source_t source, unsigned char* entropy_buffer, int collect_entropy_by_source(entropy_source_t source, unsigned char* entropy_buffer,
size_t target_bytes, size_t* collected_bytes, int display_progress) { size_t target_bytes, size_t* collected_bytes, int display_progress) {

View File

@@ -15,7 +15,7 @@
#include <termios.h> #include <termios.h>
#include <fcntl.h> #include <fcntl.h>
#include <math.h> #include <math.h>
#include "../include/otp.h" #include "main.h"
int main(int argc, char* argv[]) { int main(int argc, char* argv[]) {
// Initialize terminal dimensions first // Initialize terminal dimensions first
@@ -241,7 +241,7 @@ int command_line_mode(int argc, char* argv[]) {
} }
void print_usage(const char* program_name) { void print_usage(const char* program_name) {
printf("OTP Cipher - One Time Pad Implementation v0.3.16\n"); printf("OTP Cipher - One Time Pad Implementation %s\n", OTP_VERSION);
printf("Built for testing entropy system\n"); printf("Built for testing entropy system\n");
printf("Usage:\n"); printf("Usage:\n");
printf(" %s - Interactive mode\n", program_name); printf(" %s - Interactive mode\n", program_name);

View File

@@ -1,12 +1,12 @@
#ifndef OTP_H #ifndef MAIN_H
#define OTP_H #define MAIN_H
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
// OTP CIPHER - FUNCTION PROTOTYPES HEADER // OTP CIPHER - MAIN HEADER FILE
// One Time Pad Implementation v0.2.109 // One Time Pad Implementation
// //
// This header file contains all function prototypes extracted from otp.c // This header file contains all function prototypes and type definitions
// Organized by functional categories for better maintainability // for the OTP Cipher project
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
#include <stdio.h> #include <stdio.h>
@@ -22,6 +22,9 @@
#include <string.h> #include <string.h>
#include <ctype.h> #include <ctype.h>
// Version - Updated automatically by build.sh
#define OTP_VERSION "v0.3.49"
// Constants // Constants
#define MAX_INPUT_SIZE 4096 #define MAX_INPUT_SIZE 4096
#define MAX_LINE_LENGTH 1024 #define MAX_LINE_LENGTH 1024
@@ -127,6 +130,7 @@ char* get_preferred_editor(void);
char* get_preferred_file_manager(void); char* get_preferred_file_manager(void);
int launch_text_editor(const char* initial_content, char* result_buffer, size_t buffer_size); int launch_text_editor(const char* initial_content, char* result_buffer, size_t buffer_size);
int launch_file_manager(const char* start_directory, char* selected_file, size_t buffer_size); int launch_file_manager(const char* start_directory, char* selected_file, size_t buffer_size);
int launch_directory_manager(const char* start_directory, char* selected_dir, size_t buffer_size);
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
// CORE CRYPTOGRAPHIC OPERATIONS // CORE CRYPTOGRAPHIC OPERATIONS
@@ -164,36 +168,23 @@ void display_entropy_progress(const entropy_collection_state_t* state);
void draw_progress_bar(double percentage, int width); void draw_progress_bar(double percentage, int width);
void draw_quality_bar(double quality, int width, const char* label); void draw_quality_bar(double quality, int width, const char* label);
// TrueRNG Device Constants (updated to match otp.c implementation) // Hardware RNG Device Constants (lowercase to match sysfs output)
#define TRUERNG_VID "04D8" #define TRUERNG_VID "04d8"
#define TRUERNG_PID "F5FE" #define TRUERNG_ORIGINAL_PID "f5fe"
#define TRUERNGPRO_VID "16D0" #define TRUERNG_PRO_PID "0aa0"
#define TRUERNGPRO_PID "0AA0" #define TRUERNG_PRO_V2_PID "ebb5"
#define TRUERNGPROV2_VID "04D8"
#define TRUERNGPROV2_PID "EBB5"
// SwiftRNG Device Constants (same VID/PID as TrueRNG devices) // Hardware RNG Device Type enumeration
#define SWIFT_RNG_VID "04D8"
#define SWIFT_RNG_PID "F5FE"
#define SWIFT_RNG_PRO_VID "16D0"
#define SWIFT_RNG_PRO_PID "0AA0"
#define SWIFT_RNG_PRO_V2_VID "04D8"
#define SWIFT_RNG_PRO_V2_PID "EBB5"
// TrueRNG/SwiftRNG Device Type enumeration
typedef enum { typedef enum {
TRUERNG_ORIGINAL = 1, TRUERNG_ORIGINAL = 1,
TRUERNG_PRO = 2, TRUERNG_PRO = 2,
TRUERNG_PRO_V2 = 3, TRUERNG_PRO_V2 = 3
SWIFT_RNG = 4, } hardware_rng_device_type_t;
SWIFT_RNG_PRO = 5,
SWIFT_RNG_PRO_V2 = 6
} truerng_device_type_t;
// Hardware RNG device information structure // Hardware RNG device information structure
typedef struct { typedef struct {
char port_path[256]; // Device port path (e.g., /dev/ttyUSB0) char port_path[256]; // Device port path (e.g., /dev/ttyUSB0)
truerng_device_type_t device_type; // Device type identifier hardware_rng_device_type_t device_type; // Device type identifier
char friendly_name[64]; // Human-readable device name char friendly_name[64]; // Human-readable device name
int is_working; // 1 if device passes basic test, 0 otherwise int is_working; // 1 if device passes basic test, 0 otherwise
} hardware_rng_device_t; } hardware_rng_device_t;
@@ -202,21 +193,27 @@ typedef struct {
int detect_all_hardware_rng_devices(hardware_rng_device_t* devices, int max_devices, int* num_devices_found); int detect_all_hardware_rng_devices(hardware_rng_device_t* devices, int max_devices, int* num_devices_found);
int test_hardware_rng_device(const hardware_rng_device_t* device); int test_hardware_rng_device(const hardware_rng_device_t* device);
int select_hardware_rng_device_interactive(hardware_rng_device_t* devices, int num_devices, hardware_rng_device_t* selected_device); int select_hardware_rng_device_interactive(hardware_rng_device_t* devices, int num_devices, hardware_rng_device_t* selected_device);
int find_truerng_port(char* port_path, size_t port_path_size, truerng_device_type_t* device_type); // Legacy function for backward compatibility int find_truerng_port(char* port_path, size_t port_path_size, hardware_rng_device_type_t* device_type); // Legacy function for backward compatibility
// TrueRNG entropy collection functions (updated to match implementation) // TrueRNG entropy collection functions (updated to match implementation)
int configure_rng_serial_port(int fd, hardware_rng_device_type_t device_type);
int setup_truerng_serial_port(const char* port_path); int setup_truerng_serial_port(const char* port_path);
int collect_truerng_entropy(unsigned char* entropy_buffer, size_t target_bytes, size_t* collected_bytes, int display_progress); int collect_truerng_entropy(unsigned char* entropy_buffer, size_t target_bytes, size_t* collected_bytes, int display_progress);
int collect_truerng_entropy_from_device(const hardware_rng_device_t* device, unsigned char* entropy_buffer, int collect_truerng_entropy_from_device(const hardware_rng_device_t* device, unsigned char* entropy_buffer,
size_t target_bytes, size_t* collected_bytes, int display_progress); size_t target_bytes, size_t* collected_bytes, int display_progress);
int collect_truerng_entropy_streaming_from_device(const hardware_rng_device_t* device, const char* pad_chksum, int collect_truerng_entropy_streaming_from_device(const hardware_rng_device_t* device, const char* pad_chksum,
size_t total_bytes, int display_progress, int entropy_mode); size_t total_bytes, int display_progress, int entropy_mode);
const char* get_truerng_device_name(truerng_device_type_t device_type); const char* get_truerng_device_name(hardware_rng_device_type_t device_type);
int read_usb_device_info(const char* port_name, char* vid, char* pid); int read_usb_device_info(const char* port_name, char* vid, char* pid);
// Dice entropy collection functions (updated to match implementation) // Dice entropy collection functions (updated to match implementation)
int collect_dice_entropy(unsigned char* entropy_buffer, size_t target_bytes, size_t* collected_bytes, int display_progress); int collect_dice_entropy(unsigned char* entropy_buffer, size_t target_bytes, size_t* collected_bytes, int display_progress);
// File entropy collection functions
int get_file_entropy_info(char* file_path, size_t max_path_len, size_t* file_size, int display_progress);
int collect_file_entropy(unsigned char* entropy_buffer, size_t target_bytes, size_t* collected_bytes, int display_progress);
int add_file_entropy_streaming(const char* pad_chksum, const char* file_path, size_t file_size, int display_progress);
// Unified entropy collection interface (updated to match implementation) // Unified entropy collection interface (updated to match implementation)
int collect_entropy_by_source(entropy_source_t source, unsigned char* entropy_buffer, size_t target_bytes, size_t* collected_bytes, int display_progress); int collect_entropy_by_source(entropy_source_t source, unsigned char* entropy_buffer, size_t target_bytes, size_t* collected_bytes, int display_progress);
@@ -242,6 +239,23 @@ int update_pad_checksum_after_entropy(const char* old_chksum, char* new_chksum);
int rename_pad_files_safely(const char* old_chksum, const char* new_chksum); int rename_pad_files_safely(const char* old_chksum, const char* new_chksum);
int is_pad_unused(const char* pad_chksum); int is_pad_unused(const char* pad_chksum);
////////////////////////////////////////////////////////////////////////////////
// DIRECTORY ARCHIVING AND COMPRESSION FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Directory encryption/decryption (TAR + GZIP + OTP)
int encrypt_directory(const char* dir_path, const char* pad_identifier, const char* output_file);
int decrypt_and_extract_directory(const char* encrypted_file, const char* output_dir);
int is_compressed_tar_archive(const char* file_path);
// TAR archive operations
int create_tar_archive(const char* dir_path, const char* tar_output_path);
int extract_tar_archive(const char* tar_path, const char* output_dir);
// Compression operations
int compress_file_gzip(const char* input_path, const char* output_path);
int decompress_file_gzip(const char* input_path, const char* output_path);
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
// DIRECTORY MANAGEMENT FUNCTIONS // DIRECTORY MANAGEMENT FUNCTIONS
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
@@ -253,6 +267,16 @@ const char* get_files_directory(void);
void get_default_file_path(const char* filename, char* result_path, size_t result_size); void get_default_file_path(const char* filename, char* result_path, size_t result_size);
void get_directory_display(const char* file_path, char* result, size_t result_size); void get_directory_display(const char* file_path, char* result, size_t result_size);
////////////////////////////////////////////////////////////////////////////////
// MESSAGE PADDING FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Exponential bucketing and ISO/IEC 9797-1 Method 2 (Padmé) padding
size_t calculate_chunk_size(size_t msg_len);
int apply_padme_padding(unsigned char* buffer, size_t msg_len, size_t chunk_size);
int remove_padme_padding(const unsigned char* buffer, size_t chunk_size, size_t* msg_len);
void format_chunk_size(size_t chunk_size, char* buffer, size_t buffer_size);
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
// UTILITY FUNCTIONS // UTILITY FUNCTIONS
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
@@ -263,6 +287,7 @@ char* find_pad_by_prefix(const char* prefix);
int show_pad_info(const char* chksum); int show_pad_info(const char* chksum);
void show_progress(uint64_t current, uint64_t total, time_t start_time); void show_progress(uint64_t current, uint64_t total, time_t start_time);
void format_time_remaining(double seconds, char* buffer, size_t buffer_size); void format_time_remaining(double seconds, char* buffer, size_t buffer_size);
int is_escape_input(const char* input);
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
// FILE OPERATIONS // FILE OPERATIONS
@@ -318,6 +343,7 @@ int handle_decrypt_menu(void);
int handle_pads_menu(void); int handle_pads_menu(void);
int handle_text_encrypt(void); int handle_text_encrypt(void);
int handle_file_encrypt(void); int handle_file_encrypt(void);
int handle_directory_encrypt(void);
int handle_verify_pad(const char* pad_chksum); int handle_verify_pad(const char* pad_chksum);
int handle_delete_pad(const char* pad_chksum); int handle_delete_pad(const char* pad_chksum);
@@ -342,4 +368,4 @@ char* select_pad_interactive(const char* title, const char* prompt, pad_filter_t
// Help and usage display // Help and usage display
void print_usage(const char* program_name); void print_usage(const char* program_name);
#endif // OTP_H #endif // MAIN_H

View File

@@ -129,8 +129,8 @@ int chacha20_block(const uint8_t key[32], uint32_t counter,
return 0; return 0;
} }
int chacha20_encrypt(const uint8_t key[32], uint32_t counter, int chacha20_encrypt(const uint8_t key[32], uint32_t counter,
const uint8_t nonce[12], const uint8_t* input, const uint8_t nonce[12], const uint8_t* input,
uint8_t* output, size_t length) { uint8_t* output, size_t length) {
uint8_t keystream[CHACHA20_BLOCK_SIZE]; uint8_t keystream[CHACHA20_BLOCK_SIZE];
size_t offset = 0; size_t offset = 0;
@@ -161,3 +161,45 @@ int chacha20_encrypt(const uint8_t key[32], uint32_t counter,
return 0; return 0;
} }
int chacha20_encrypt_extended(const uint8_t key[32], uint32_t counter_low,
uint32_t counter_high, const uint8_t nonce[8],
const uint8_t* input, uint8_t* output, size_t length) {
uint8_t keystream[CHACHA20_BLOCK_SIZE];
uint8_t extended_nonce[12];
size_t offset = 0;
while (length > 0) {
/* Build extended 12-byte nonce: [counter_high (4 bytes)][nonce (8 bytes)] */
u32_to_bytes_le(counter_high, extended_nonce);
memcpy(extended_nonce + 4, nonce, 8);
/* Generate keystream block using extended nonce */
int ret = chacha20_block(key, counter_low, extended_nonce, keystream);
if (ret != 0) {
return ret;
}
/* XOR with input to produce output */
size_t block_len = (length < CHACHA20_BLOCK_SIZE) ? length : CHACHA20_BLOCK_SIZE;
for (size_t i = 0; i < block_len; i++) {
output[offset + i] = input[offset + i] ^ keystream[i];
}
/* Move to next block */
offset += block_len;
length -= block_len;
counter_low++;
/* Check for counter_low overflow and increment counter_high */
if (counter_low == 0) {
counter_high++;
/* Check for counter_high overflow (extremely unlikely - > 1 exabyte) */
if (counter_high == 0) {
return -1; /* Extended counter wrapped around */
}
}
}
return 0;
}

View File

@@ -63,10 +63,10 @@ int chacha20_block(const uint8_t key[32], uint32_t counter,
/** /**
* ChaCha20 encryption/decryption * ChaCha20 encryption/decryption
* *
* Encrypts or decrypts data using ChaCha20 stream cipher. * Encrypts or decrypts data using ChaCha20 stream cipher.
* Since ChaCha20 is a stream cipher, encryption and decryption are the same operation. * Since ChaCha20 is a stream cipher, encryption and decryption are the same operation.
* *
* @param key[in] 32-byte key * @param key[in] 32-byte key
* @param counter[in] Initial 32-bit counter value * @param counter[in] Initial 32-bit counter value
* @param nonce[in] 12-byte nonce * @param nonce[in] 12-byte nonce
@@ -75,10 +75,29 @@ int chacha20_block(const uint8_t key[32], uint32_t counter,
* @param length[in] Length of input data in bytes * @param length[in] Length of input data in bytes
* @return 0 on success, negative on error * @return 0 on success, negative on error
*/ */
int chacha20_encrypt(const uint8_t key[32], uint32_t counter, int chacha20_encrypt(const uint8_t key[32], uint32_t counter,
const uint8_t nonce[12], const uint8_t* input, const uint8_t nonce[12], const uint8_t* input,
uint8_t* output, size_t length); uint8_t* output, size_t length);
/**
* ChaCha20 encryption/decryption with extended counter (64-bit)
*
* Extended version that supports files larger than 256GB by using
* part of the nonce as a high-order counter extension.
*
* @param key[in] 32-byte key
* @param counter_low[in] Initial 32-bit counter value (low bits)
* @param counter_high[in] Initial 32-bit counter value (high bits)
* @param nonce[in] 8-byte reduced nonce (instead of 12)
* @param input[in] Input data to encrypt/decrypt
* @param output[out] Output buffer (can be same as input)
* @param length[in] Length of input data in bytes
* @return 0 on success, negative on error
*/
int chacha20_encrypt_extended(const uint8_t key[32], uint32_t counter_low,
uint32_t counter_high, const uint8_t nonce[8],
const uint8_t* input, uint8_t* output, size_t length);
/* /*
* ============================================================================ * ============================================================================
* UTILITY FUNCTIONS * UTILITY FUNCTIONS

92
src/padding.c Normal file
View File

@@ -0,0 +1,92 @@
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include "main.h"
////////////////////////////////////////////////////////////////////////////////
// MESSAGE PADDING IMPLEMENTATION
// ISO/IEC 9797-1 Method 2 (Padmé Padding)
// with Exponential Bucketing for Traffic Analysis Resistance
////////////////////////////////////////////////////////////////////////////////
// Calculate required chunk size using exponential bucketing
// Starting at 256 bytes, doubling each time
// Provides strong protection against length analysis attacks
size_t calculate_chunk_size(size_t msg_len) {
size_t chunk = 256; // Minimum chunk size: 256 bytes
// Need space for message + 0x80 byte (minimum 1 byte padding)
while (chunk < msg_len + 1) {
chunk *= 2;
}
return chunk;
}
// Apply ISO/IEC 9797-1 Method 2 (Padmé) padding
// Appends 0x80 byte followed by 0x00 bytes to reach chunk boundary
// Returns 0 on success, non-zero on error
int apply_padme_padding(unsigned char* buffer, size_t msg_len, size_t chunk_size) {
if (!buffer) {
return 1; // Error: null pointer
}
if (chunk_size < msg_len + 1) {
return 2; // Error: chunk size too small for message + padding
}
// Apply padding: 0x80 followed by 0x00 bytes
buffer[msg_len] = 0x80;
// Fill remaining bytes with 0x00
if (chunk_size > msg_len + 1) {
memset(buffer + msg_len + 1, 0x00, chunk_size - msg_len - 1);
}
return 0; // Success
}
// Remove ISO/IEC 9797-1 Method 2 (Padmé) padding
// Scans backwards for 0x80 marker, validates padding
// Returns 0 on success, non-zero on error
// Sets msg_len to the actual message length (excluding padding)
int remove_padme_padding(const unsigned char* buffer, size_t chunk_size, size_t* msg_len) {
if (!buffer || !msg_len) {
return 1; // Error: null pointer
}
if (chunk_size == 0) {
return 2; // Error: invalid chunk size
}
// Scan backwards from end to find 0x80 marker
for (int i = chunk_size - 1; i >= 0; i--) {
if (buffer[i] == 0x80) {
// Found the padding marker
*msg_len = i;
return 0; // Success
} else if (buffer[i] != 0x00) {
// Found non-zero, non-0x80 byte - invalid padding
return 3; // Error: invalid padding (corrupted or tampered data)
}
}
// No 0x80 marker found - invalid padding
return 4; // Error: no padding marker found
}
// Helper function to get human-readable chunk size
// Useful for debugging and user feedback
void format_chunk_size(size_t chunk_size, char* buffer, size_t buffer_size) {
if (!buffer || buffer_size == 0) return;
if (chunk_size < 1024) {
snprintf(buffer, buffer_size, "%zu bytes", chunk_size);
} else if (chunk_size < 1024 * 1024) {
snprintf(buffer, buffer_size, "%.1f KB", chunk_size / 1024.0);
} else if (chunk_size < 1024 * 1024 * 1024) {
snprintf(buffer, buffer_size, "%.1f MB", chunk_size / (1024.0 * 1024.0));
} else {
snprintf(buffer, buffer_size, "%.1f GB", chunk_size / (1024.0 * 1024.0 * 1024.0));
}
}

View File

@@ -15,17 +15,20 @@
#include <termios.h> #include <termios.h>
#include <fcntl.h> #include <fcntl.h>
#include <math.h> #include <math.h>
#include "../include/otp.h" #include <errno.h>
#include "main.h"
// Extracted pad management functions from otp.c // Extracted pad management functions from otp.c
int show_pad_info(const char* chksum) { int show_pad_info(const char* chksum) {
char pad_filename[MAX_HASH_LENGTH + 10]; char pad_filename[1024];
char state_filename[MAX_HASH_LENGTH + 10]; char state_filename[1024];
snprintf(pad_filename, sizeof(pad_filename), "%s.pad", chksum); // Use full paths with pads directory
snprintf(state_filename, sizeof(state_filename), "%s.state", chksum); const char* pads_dir = get_current_pads_dir();
snprintf(pad_filename, sizeof(pad_filename), "%s/%s.pad", pads_dir, chksum);
snprintf(state_filename, sizeof(state_filename), "%s/%s.state", pads_dir, chksum);
struct stat st; struct stat st;
if (stat(pad_filename, &st) != 0) { if (stat(pad_filename, &st) != 0) {
@@ -40,9 +43,9 @@ int show_pad_info(const char* chksum) {
printf("ChkSum: %s\n", chksum); printf("ChkSum: %s\n", chksum);
printf("File: %s\n", pad_filename); printf("File: %s\n", pad_filename);
double size_gb = (double)st.st_size / (1024.0 * 1024.0 * 1024.0); double size_gb = (double)st.st_size / (1000.0 * 1000.0 * 1000.0);
double used_gb = (double)used_bytes / (1024.0 * 1024.0 * 1024.0); double used_gb = (double)used_bytes / (1000.0 * 1000.0 * 1000.0);
double remaining_gb = (double)(st.st_size - used_bytes) / (1024.0 * 1024.0 * 1024.0); double remaining_gb = (double)(st.st_size - used_bytes) / (1000.0 * 1000.0 * 1000.0);
printf("Total size: %.2f GB (%lu bytes)\n", size_gb, st.st_size); printf("Total size: %.2f GB (%lu bytes)\n", size_gb, st.st_size);
printf("Used: %.2f GB (%lu bytes)\n", used_gb, used_bytes); printf("Used: %.2f GB (%lu bytes)\n", used_gb, used_bytes);
@@ -82,13 +85,40 @@ int generate_pad(uint64_t size_bytes, int display_progress) {
return 1; return 1;
} }
// Check available disk space before starting
const char* pads_dir = get_current_pads_dir();
struct statvfs stat;
if (statvfs(pads_dir, &stat) == 0) {
// Use f_bavail (available to non-root users) for accurate space reporting
// This accounts for filesystem reserved space (e.g., 5% on ext4)
uint64_t available_bytes = stat.f_bavail * stat.f_frsize;
double available_gb = (double)available_bytes / (1000.0 * 1000.0 * 1000.0);
double required_gb = (double)size_bytes / (1000.0 * 1000.0 * 1000.0);
if (available_bytes < size_bytes) {
printf("\n⚠ WARNING: Insufficient disk space!\n");
printf(" Required: %.2f GB (%lu bytes)\n", required_gb, size_bytes);
printf(" Available: %.2f GB (%lu bytes)\n", available_gb, available_bytes);
printf(" Shortfall: %.2f GB\n", required_gb - available_gb);
printf(" Location: %s\n", pads_dir);
printf("\nContinue anyway? (y/N): ");
char response[10];
if (!fgets(response, sizeof(response), stdin) ||
(toupper(response[0]) != 'Y')) {
printf("Pad generation cancelled.\n");
return 1;
}
printf("\n");
}
}
char temp_filename[1024]; char temp_filename[1024];
char pad_path[MAX_HASH_LENGTH + 20]; char pad_path[MAX_HASH_LENGTH + 20];
char state_path[MAX_HASH_LENGTH + 20]; char state_path[MAX_HASH_LENGTH + 20];
char chksum_hex[MAX_HASH_LENGTH]; char chksum_hex[MAX_HASH_LENGTH];
// Create temporary filename in the pads directory to avoid cross-filesystem issues // Create temporary filename in the pads directory to avoid cross-filesystem issues
const char* pads_dir = get_current_pads_dir();
snprintf(temp_filename, sizeof(temp_filename), "%s/temp_%ld.pad", pads_dir, time(NULL)); snprintf(temp_filename, sizeof(temp_filename), "%s/temp_%ld.pad", pads_dir, time(NULL));
FILE* urandom = fopen("/dev/urandom", "rb"); FILE* urandom = fopen("/dev/urandom", "rb");
@@ -99,11 +129,54 @@ int generate_pad(uint64_t size_bytes, int display_progress) {
FILE* pad_file = fopen(temp_filename, "wb"); FILE* pad_file = fopen(temp_filename, "wb");
if (!pad_file) { if (!pad_file) {
printf("Error: Cannot create temporary pad file %s\n", temp_filename); printf("Error: Cannot create temporary pad file '%s': %s (errno %d)\n",
temp_filename, strerror(errno), errno);
fclose(urandom); fclose(urandom);
return 1; return 1;
} }
// Preallocate full file size using posix_fallocate for guaranteed space reservation
// This actually allocates disk blocks (unlike ftruncate which creates sparse files)
int fd = fileno(pad_file);
double size_gb = (double)size_bytes / (1000.0 * 1000.0 * 1000.0);
if (display_progress) {
printf("Allocating %.2f GB on disk...\n", size_gb);
}
int alloc_result = posix_fallocate(fd, 0, (off_t)size_bytes);
if (alloc_result != 0) {
printf("Error: Failed to allocate %.2f GB temp file: %s (errno %d)\n",
size_gb, strerror(alloc_result), alloc_result);
printf(" Temp file: %s\n", temp_filename);
printf(" Location: %s\n", pads_dir);
if (alloc_result == ENOSPC) {
printf(" Cause: No space left on device\n");
printf(" This means the actual available space is less than reported\n");
} else if (alloc_result == EOPNOTSUPP) {
printf(" Cause: Filesystem doesn't support posix_fallocate\n");
printf(" Falling back to ftruncate (sparse file)...\n");
if (ftruncate(fd, (off_t)size_bytes) != 0) {
printf(" Fallback failed: %s\n", strerror(errno));
fclose(pad_file);
fclose(urandom);
unlink(temp_filename);
return 1;
}
} else {
printf(" Possible causes: quota limits, filesystem restrictions\n");
fclose(pad_file);
fclose(urandom);
unlink(temp_filename);
return 1;
}
}
if (display_progress && alloc_result == 0) {
printf("✓ Allocated %.2f GB on disk (guaranteed space)\n", size_gb);
}
unsigned char buffer[64 * 1024]; // 64KB buffer unsigned char buffer[64 * 1024]; // 64KB buffer
uint64_t bytes_written = 0; uint64_t bytes_written = 0;
time_t start_time = time(NULL); time_t start_time = time(NULL);
@@ -119,7 +192,8 @@ int generate_pad(uint64_t size_bytes, int display_progress) {
} }
if (fread(buffer, 1, (size_t)chunk_size, urandom) != (size_t)chunk_size) { if (fread(buffer, 1, (size_t)chunk_size, urandom) != (size_t)chunk_size) {
printf("Error: Failed to read from /dev/urandom\n"); printf("Error: Failed to read %lu bytes from /dev/urandom at position %lu: %s (errno %d)\n",
chunk_size, bytes_written, strerror(errno), errno);
fclose(urandom); fclose(urandom);
fclose(pad_file); fclose(pad_file);
unlink(temp_filename); unlink(temp_filename);
@@ -127,7 +201,11 @@ int generate_pad(uint64_t size_bytes, int display_progress) {
} }
if (fwrite(buffer, 1, (size_t)chunk_size, pad_file) != (size_t)chunk_size) { if (fwrite(buffer, 1, (size_t)chunk_size, pad_file) != (size_t)chunk_size) {
printf("Error: Failed to write to pad file\n"); printf("Error: fwrite failed for %lu bytes at position %lu/%lu (%.1f%%): %s (errno %d)\n",
chunk_size, bytes_written, size_bytes,
(double)bytes_written / size_bytes * 100.0, strerror(errno), errno);
printf(" Temp file: %s\n", temp_filename);
printf(" Disk space was checked - possible causes: fragmentation, I/O timeout, quota\n");
fclose(urandom); fclose(urandom);
fclose(pad_file); fclose(pad_file);
unlink(temp_filename); unlink(temp_filename);
@@ -175,10 +253,10 @@ int generate_pad(uint64_t size_bytes, int display_progress) {
} }
// Initialize state file with offset 32 (first 32 bytes reserved for checksum encryption) // Initialize state file with offset 32 (first 32 bytes reserved for checksum encryption)
FILE* state_file = fopen(state_path, "wb"); FILE* state_file = fopen(state_path, "w");
if (state_file) { if (state_file) {
uint64_t reserved_bytes = 32; uint64_t reserved_bytes = 32;
fwrite(&reserved_bytes, sizeof(uint64_t), 1, state_file); fprintf(state_file, "offset=%lu\n", reserved_bytes);
fclose(state_file); fclose(state_file);
} else { } else {
printf("Error: Failed to create state file\n"); printf("Error: Failed to create state file\n");
@@ -186,8 +264,10 @@ int generate_pad(uint64_t size_bytes, int display_progress) {
return 1; return 1;
} }
double size_gb = (double)size_bytes / (1024.0 * 1024.0 * 1024.0); if (display_progress) {
printf("Generated pad: %s (%.2f GB)\n", pad_path, size_gb); double final_size_gb = (double)size_bytes / (1000.0 * 1000.0 * 1000.0);
printf("Generated pad: %s (%.2f GB)\n", pad_path, final_size_gb);
}
printf("Pad checksum: %s\n", chksum_hex); printf("Pad checksum: %s\n", chksum_hex);
printf("State file: %s\n", state_path); printf("State file: %s\n", state_path);
printf("Pad file set to read-only\n"); printf("Pad file set to read-only\n");
@@ -206,19 +286,33 @@ int read_state_offset(const char* pad_chksum, uint64_t* offset) {
const char* pads_dir = get_current_pads_dir(); const char* pads_dir = get_current_pads_dir();
snprintf(state_filename, sizeof(state_filename), "%s/%s.state", pads_dir, pad_chksum); snprintf(state_filename, sizeof(state_filename), "%s/%s.state", pads_dir, pad_chksum);
FILE* state_file = fopen(state_filename, "rb"); FILE* state_file = fopen(state_filename, "r");
if (!state_file) { if (!state_file) {
*offset = 0; *offset = 0;
return 0; return 0;
} }
if (fread(offset, sizeof(uint64_t), 1, state_file) != 1) { // Read text format only (required format: "offset=<number>")
char line[128];
if (fgets(line, sizeof(line), state_file)) {
// Check if it's text format (starts with "offset=")
if (strncmp(line, "offset=", 7) == 0) {
*offset = strtoull(line + 7, NULL, 10);
fclose(state_file);
return 0;
}
// Not in proper text format - error
fclose(state_file); fclose(state_file);
fprintf(stderr, "Error: State file '%s' is not in proper text format\n", state_filename);
fprintf(stderr, "Expected format: offset=<number>\n");
fprintf(stderr, "Please convert old binary state files to text format\n");
*offset = 0; *offset = 0;
return 0; return 1;
} }
fclose(state_file); fclose(state_file);
*offset = 0;
return 0; return 0;
} }
@@ -227,12 +321,13 @@ int write_state_offset(const char* pad_chksum, uint64_t offset) {
const char* pads_dir = get_current_pads_dir(); const char* pads_dir = get_current_pads_dir();
snprintf(state_filename, sizeof(state_filename), "%s/%s.state", pads_dir, pad_chksum); snprintf(state_filename, sizeof(state_filename), "%s/%s.state", pads_dir, pad_chksum);
FILE* state_file = fopen(state_filename, "wb"); FILE* state_file = fopen(state_filename, "w");
if (!state_file) { if (!state_file) {
return 1; return 1;
} }
if (fwrite(&offset, sizeof(uint64_t), 1, state_file) != 1) { // Write in text format for human readability
if (fprintf(state_file, "offset=%lu\n", offset) < 0) {
fclose(state_file); fclose(state_file);
return 1; return 1;
} }
@@ -331,25 +426,25 @@ char* select_pad_interactive(const char* title, const char* prompt, pad_filter_t
} }
// Format total size // Format total size
if (st.st_size < 1024) { if (st.st_size < 1000) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%luB", st.st_size); snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%luB", st.st_size);
} else if (st.st_size < 1024 * 1024) { } else if (st.st_size < 1000 * 1000) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fKB", (double)st.st_size / 1024.0); snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fKB", (double)st.st_size / 1000.0);
} else if (st.st_size < 1024 * 1024 * 1024) { } else if (st.st_size < 1000 * 1000 * 1000) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fMB", (double)st.st_size / (1024.0 * 1024.0)); snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fMB", (double)st.st_size / (1000.0 * 1000.0));
} else { } else {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.2fGB", (double)st.st_size / (1024.0 * 1024.0 * 1024.0)); snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.2fGB", (double)st.st_size / (1000.0 * 1000.0 * 1000.0));
} }
// Format used size // Format used size
if (used_bytes < 1024) { if (used_bytes < 1000) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%luB", used_bytes); snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%luB", used_bytes);
} else if (used_bytes < 1024 * 1024) { } else if (used_bytes < 1000 * 1000) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fKB", (double)used_bytes / 1024.0); snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fKB", (double)used_bytes / 1000.0);
} else if (used_bytes < 1024 * 1024 * 1024) { } else if (used_bytes < 1000 * 1000 * 1000) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fMB", (double)used_bytes / (1024.0 * 1024.0)); snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fMB", (double)used_bytes / (1000.0 * 1000.0));
} else { } else {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.2fGB", (double)used_bytes / (1024.0 * 1024.0 * 1024.0)); snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.2fGB", (double)used_bytes / (1000.0 * 1000.0 * 1000.0));
} }
// Calculate percentage // Calculate percentage
@@ -375,6 +470,13 @@ char* select_pad_interactive(const char* title, const char* prompt, pad_filter_t
return NULL; return NULL;
} }
// If only one pad available, auto-select it
if (pad_count == 1) {
printf("\n%s\n", title);
printf("Only one pad available - auto-selecting: %.16s...\n\n", pads[0].chksum);
return strdup(pads[0].chksum);
}
// Calculate minimal unique prefixes for each pad // Calculate minimal unique prefixes for each pad
char prefixes[100][65]; char prefixes[100][65];
int prefix_lengths[100]; int prefix_lengths[100];
@@ -531,6 +633,27 @@ int handle_pads_menu(void) {
// Get list of pads from current directory // Get list of pads from current directory
const char* pads_dir = get_current_pads_dir(); const char* pads_dir = get_current_pads_dir();
// Display directory and space information
printf("Pads Directory: %s\n", pads_dir);
// Get filesystem space information
struct statvfs vfs_stat;
if (statvfs(pads_dir, &vfs_stat) == 0) {
uint64_t total_bytes = vfs_stat.f_blocks * vfs_stat.f_frsize;
uint64_t available_bytes = vfs_stat.f_bavail * vfs_stat.f_frsize;
uint64_t used_bytes = total_bytes - (vfs_stat.f_bfree * vfs_stat.f_frsize);
double total_gb = (double)total_bytes / (1000.0 * 1000.0 * 1000.0);
double available_gb = (double)available_bytes / (1000.0 * 1000.0 * 1000.0);
double used_gb = (double)used_bytes / (1000.0 * 1000.0 * 1000.0);
double used_percent = (double)used_bytes / total_bytes * 100.0;
printf("Drive Space: %.2f GB total, %.2f GB used (%.1f%%), %.2f GB available\n",
total_gb, used_gb, used_percent, available_gb);
}
printf("\n");
DIR* dir = opendir(pads_dir); DIR* dir = opendir(pads_dir);
if (!dir) { if (!dir) {
printf("Error: Cannot open pads directory %s\n", pads_dir); printf("Error: Cannot open pads directory %s\n", pads_dir);
@@ -566,25 +689,25 @@ int handle_pads_menu(void) {
read_state_offset(pads[pad_count].chksum, &used_bytes); read_state_offset(pads[pad_count].chksum, &used_bytes);
// Format total size // Format total size
if (st.st_size < 1024) { if (st.st_size < 1000) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%luB", st.st_size); snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%luB", st.st_size);
} else if (st.st_size < 1024 * 1024) { } else if (st.st_size < 1000 * 1000) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fKB", (double)st.st_size / 1024.0); snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fKB", (double)st.st_size / 1000.0);
} else if (st.st_size < 1024 * 1024 * 1024) { } else if (st.st_size < 1000 * 1000 * 1000) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fMB", (double)st.st_size / (1024.0 * 1024.0)); snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fMB", (double)st.st_size / (1000.0 * 1000.0));
} else { } else {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.2fGB", (double)st.st_size / (1024.0 * 1024.0 * 1024.0)); snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.2fGB", (double)st.st_size / (1000.0 * 1000.0 * 1000.0));
} }
// Format used size // Format used size
if (used_bytes < 1024) { if (used_bytes < 1000) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%luB", used_bytes); snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%luB", used_bytes);
} else if (used_bytes < 1024 * 1024) { } else if (used_bytes < 1000 * 1000) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fKB", (double)used_bytes / 1024.0); snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fKB", (double)used_bytes / 1000.0);
} else if (used_bytes < 1024 * 1024 * 1024) { } else if (used_bytes < 1000 * 1000 * 1000) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fMB", (double)used_bytes / (1024.0 * 1024.0)); snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fMB", (double)used_bytes / (1000.0 * 1000.0));
} else { } else {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.2fGB", (double)used_bytes / (1024.0 * 1024.0 * 1024.0)); snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.2fGB", (double)used_bytes / (1000.0 * 1000.0 * 1000.0));
} }
// Calculate percentage // Calculate percentage
@@ -874,12 +997,14 @@ int update_pad_checksum_after_entropy(const char* old_chksum, char* new_chksum)
// Verify pad integrity by checking its checksum // Verify pad integrity by checking its checksum
int handle_verify_pad(const char* chksum) { int handle_verify_pad(const char* chksum) {
char pad_filename[MAX_HASH_LENGTH + 10]; char pad_filename[1024];
char state_filename[MAX_HASH_LENGTH + 10]; char state_filename[1024];
char calculated_chksum[MAX_HASH_LENGTH]; char calculated_chksum[MAX_HASH_LENGTH];
snprintf(pad_filename, sizeof(pad_filename), "%s.pad", chksum); // Use full paths with pads directory
snprintf(state_filename, sizeof(state_filename), "%s.state", chksum); const char* pads_dir = get_current_pads_dir();
snprintf(pad_filename, sizeof(pad_filename), "%s/%s.pad", pads_dir, chksum);
snprintf(state_filename, sizeof(state_filename), "%s/%s.state", pads_dir, chksum);
struct stat st; struct stat st;
if (stat(pad_filename, &st) != 0) { if (stat(pad_filename, &st) != 0) {
@@ -894,9 +1019,9 @@ int handle_verify_pad(const char* chksum) {
printf("ChkSum: %s\n", chksum); printf("ChkSum: %s\n", chksum);
printf("File: %s\n", pad_filename); printf("File: %s\n", pad_filename);
double size_gb = (double)st.st_size / (1024.0 * 1024.0 * 1024.0); double size_gb = (double)st.st_size / (1000.0 * 1000.0 * 1000.0);
double used_gb = (double)used_bytes / (1024.0 * 1024.0 * 1024.0); double used_gb = (double)used_bytes / (1000.0 * 1000.0 * 1000.0);
double remaining_gb = (double)(st.st_size - used_bytes) / (1024.0 * 1024.0 * 1024.0); double remaining_gb = (double)(st.st_size - used_bytes) / (1000.0 * 1000.0 * 1000.0);
printf("Total size: %.2f GB (%lu bytes)\n", size_gb, st.st_size); printf("Total size: %.2f GB (%lu bytes)\n", size_gb, st.st_size);
printf("Used: %.2f GB (%lu bytes)\n", used_gb, used_bytes); printf("Used: %.2f GB (%lu bytes)\n", used_gb, used_bytes);
@@ -927,11 +1052,13 @@ int handle_verify_pad(const char* chksum) {
// Delete a pad and its associated state file // Delete a pad and its associated state file
int handle_delete_pad(const char* chksum) { int handle_delete_pad(const char* chksum) {
char pad_filename[MAX_HASH_LENGTH + 10]; char pad_filename[1024];
char state_filename[MAX_HASH_LENGTH + 10]; char state_filename[1024];
snprintf(pad_filename, sizeof(pad_filename), "%s.pad", chksum); // Use full paths with pads directory
snprintf(state_filename, sizeof(state_filename), "%s.state", chksum); const char* pads_dir = get_current_pads_dir();
snprintf(pad_filename, sizeof(pad_filename), "%s/%s.pad", pads_dir, chksum);
snprintf(state_filename, sizeof(state_filename), "%s/%s.state", pads_dir, chksum);
// Check if pad exists // Check if pad exists
if (access(pad_filename, F_OK) != 0) { if (access(pad_filename, F_OK) != 0) {
@@ -960,7 +1087,7 @@ int handle_delete_pad(const char* chksum) {
uint64_t used_bytes; uint64_t used_bytes;
read_state_offset(chksum, &used_bytes); read_state_offset(chksum, &used_bytes);
double size_gb = (double)st.st_size / (1024.0 * 1024.0 * 1024.0); double size_gb = (double)st.st_size / (1000.0 * 1000.0 * 1000.0);
printf("\nPad to delete:\n"); printf("\nPad to delete:\n");
printf("Checksum: %s\n", chksum); printf("Checksum: %s\n", chksum);
printf("Size: %.2f GB\n", size_gb); printf("Size: %.2f GB\n", size_gb);
@@ -1021,6 +1148,61 @@ int handle_delete_pad(const char* chksum) {
return 0; return 0;
} }
// Helper function to temporarily make pad writable and store original permissions
static int make_pad_temporarily_writable(const char* pad_path, mode_t* original_mode) {
struct stat st;
// Get current permissions
if (stat(pad_path, &st) != 0) {
printf("Error: Cannot get pad file permissions: %s\n", strerror(errno));
return 1;
}
// Store original permissions
*original_mode = st.st_mode;
// Check if already writable
if (st.st_mode & S_IWUSR) {
return 0; // Already writable, no change needed
}
// Make writable by adding write permission for owner
mode_t new_mode = st.st_mode | S_IWUSR;
if (chmod(pad_path, new_mode) != 0) {
printf("Error: Cannot make pad file writable: %s\n", strerror(errno));
return 1;
}
printf("✓ Temporarily made pad writable for entropy addition\n");
return 0;
}
// Helper function to restore original pad permissions
static int restore_pad_permissions(const char* pad_path, mode_t original_mode) {
struct stat st;
// Get current permissions to check if they changed
if (stat(pad_path, &st) != 0) {
printf("Warning: Cannot check current pad permissions: %s\n", strerror(errno));
return 1;
}
// Only restore if permissions are different from original
if (st.st_mode != original_mode) {
if (chmod(pad_path, original_mode) != 0) {
printf("Warning: Cannot restore original pad permissions: %s\n", strerror(errno));
return 1;
}
// Check if we restored to read-only
if (!(original_mode & S_IWUSR)) {
printf("✓ Restored pad to read-only protection\n");
}
}
return 0;
}
int handle_add_entropy_to_pad(const char* pad_chksum) { int handle_add_entropy_to_pad(const char* pad_chksum) {
char header_text[128]; char header_text[128];
snprintf(header_text, sizeof(header_text), "Add Entropy to Pad: %.16s...", pad_chksum); snprintf(header_text, sizeof(header_text), "Add Entropy to Pad: %.16s...", pad_chksum);
@@ -1075,11 +1257,13 @@ int handle_add_entropy_to_pad(const char* pad_chksum) {
size_t target_bytes; size_t target_bytes;
// Declare variables that may be used later
char pad_path[1024] = "";
char state_path[1024] = "";
// For TrueRNG, automatically use the full pad size // For TrueRNG, automatically use the full pad size
if (entropy_source == ENTROPY_SOURCE_TRUERNG) { if (entropy_source == ENTROPY_SOURCE_TRUERNG) {
// Get the pad file size // Get the pad file size
char pad_path[1024];
char state_path[1024];
get_pad_path(pad_chksum, pad_path, state_path); get_pad_path(pad_chksum, pad_path, state_path);
struct stat pad_stat; struct stat pad_stat;
@@ -1089,17 +1273,98 @@ int handle_add_entropy_to_pad(const char* pad_chksum) {
} }
target_bytes = (size_t)pad_stat.st_size; target_bytes = (size_t)pad_stat.st_size;
printf("\nTrueRNG selected - will enhance entire pad with hardware entropy\n"); printf("\nHardware RNG selected - will enhance entire pad with hardware entropy\n");
printf("Pad size: %.2f GB (%zu bytes)\n", printf("Pad size: %.2f GB (%zu bytes)\n",
(double)target_bytes / (1024.0 * 1024.0 * 1024.0), target_bytes); (double)target_bytes / (1000.0 * 1000.0 * 1000.0), target_bytes);
} else if (entropy_source == ENTROPY_SOURCE_FILE) {
// Special handling for file entropy - ask for file path first
char file_path[512];
size_t file_size;
if (get_file_entropy_info(file_path, sizeof(file_path), &file_size, 1) != 0) {
return 1;
}
// Get pad size for comparison
get_pad_path(pad_chksum, pad_path, state_path);
struct stat pad_stat;
if (stat(pad_path, &pad_stat) != 0) {
printf("Error: Cannot get pad file size\n");
return 1;
}
uint64_t pad_size = pad_stat.st_size;
printf("\nFile vs Pad Size Analysis:\n");
printf(" Entropy file: %zu bytes\n", file_size);
printf(" Target pad: %.2f GB (%lu bytes)\n",
(double)pad_size / (1000.0 * 1000.0 * 1000.0), pad_size);
// Smart method selection based on file size vs pad size
if (file_size >= pad_size) {
printf("✓ Using Streaming Direct XOR method (file ≥ pad size)\n");
printf(" Method: Streaming XOR - entropy file will be distributed across entire pad\n");
printf(" Processing: File will be streamed in chunks (no memory limit)\n");
// Store original permissions and make pad temporarily writable
mode_t original_mode;
if (make_pad_temporarily_writable(pad_path, &original_mode) != 0) {
printf("Error: Cannot make pad file writable for entropy addition\n");
return 1;
}
// Use streaming method for large files
int result = add_file_entropy_streaming(pad_chksum, file_path, file_size, 1);
if (result != 0) {
printf("Error: Failed to add file entropy to pad\n");
restore_pad_permissions(pad_path, original_mode);
return 1;
}
// Update checksum after entropy addition
printf("\n🔄 Updating pad checksum...\n");
char new_chksum[65];
int checksum_result = update_pad_checksum_after_entropy(pad_chksum, new_chksum);
if (checksum_result == 0) {
printf("✓ Pad checksum updated successfully\n");
printf(" Old checksum: %.16s...\n", pad_chksum);
printf(" New checksum: %.16s...\n", new_chksum);
printf("✓ Pad files renamed to new checksum\n");
// Restore permissions on the new pad file
char new_pad_path[1024];
const char* pads_dir = get_current_pads_dir();
snprintf(new_pad_path, sizeof(new_pad_path), "%s/%s.pad", pads_dir, new_chksum);
restore_pad_permissions(new_pad_path, original_mode);
} else if (checksum_result == 2) {
printf(" Checksum unchanged (unusual but not an error)\n");
restore_pad_permissions(pad_path, original_mode);
} else {
printf("⚠ Warning: Checksum update failed (entropy was added successfully)\n");
printf(" You may need to manually handle the checksum update\n");
restore_pad_permissions(pad_path, original_mode);
return 1;
}
printf("\n🎉 SUCCESS! Your pad now has enhanced randomness from the entropy file!\n");
print_centered_header("Entropy Enhancement Complete", 1);
return 0; // Success - exit early, don't continue to buffer-based method
} else {
printf("✓ Using ChaCha20 method (file < pad size)\n");
printf(" Method: ChaCha20 - entropy will be expanded to fill entire pad\n");
target_bytes = file_size; // Use entire file, ChaCha20 will expand it
}
printf(" Target entropy: %zu bytes\n", target_bytes);
} else { } else {
// For other entropy sources, show the selection menu // For other entropy sources, show the selection menu
printf("\nEntropy collection options:\n"); printf("\nEntropy collection options:\n");
printf(" 1. Recommended (2048 bytes) - Optimal security\n"); printf(" 1. Recommended (2048 bytes) - Optimal security\n");
printf(" 2. Minimum (1024 bytes) - Good security\n"); printf(" 2. Minimum (1024 bytes) - Good security\n");
printf(" 3. Maximum (4096 bytes) - Maximum security\n"); printf(" 3. Custom amount\n");
printf(" 4. Custom amount\n"); printf("Enter choice (1-3): ");
printf("Enter choice (1-4): ");
char amount_input[10]; char amount_input[10];
if (!fgets(amount_input, sizeof(amount_input), stdin)) { if (!fgets(amount_input, sizeof(amount_input), stdin)) {
@@ -1118,10 +1383,7 @@ int handle_add_entropy_to_pad(const char* pad_chksum) {
target_bytes = 1024; target_bytes = 1024;
break; break;
case 3: case 3:
target_bytes = 4096; printf("Enter custom amount (512+ bytes): ");
break;
case 4:
printf("Enter custom amount (512-8192 bytes): ");
char custom_input[32]; char custom_input[32];
if (!fgets(custom_input, sizeof(custom_input), stdin)) { if (!fgets(custom_input, sizeof(custom_input), stdin)) {
printf("Error: Failed to read input\n"); printf("Error: Failed to read input\n");
@@ -1129,8 +1391,8 @@ int handle_add_entropy_to_pad(const char* pad_chksum) {
} }
size_t custom_amount = (size_t)atoi(custom_input); size_t custom_amount = (size_t)atoi(custom_input);
if (custom_amount < 512 || custom_amount > 8192) { if (custom_amount < 512) {
printf("Error: Invalid amount. Must be between 512 and 8192 bytes.\n"); printf("Error: Invalid amount. Must be at least 512 bytes.\n");
return 1; return 1;
} }
target_bytes = custom_amount; target_bytes = custom_amount;
@@ -1143,11 +1405,146 @@ int handle_add_entropy_to_pad(const char* pad_chksum) {
// For TrueRNG, detect all devices and present selection menu // For TrueRNG, detect all devices and present selection menu
if (entropy_source == ENTROPY_SOURCE_TRUERNG) { if (entropy_source == ENTROPY_SOURCE_TRUERNG) {
// Detect available hardware RNG devices
hardware_rng_device_t devices[10];
int num_devices_found = 0;
if (detect_all_hardware_rng_devices(devices, 10, &num_devices_found) != 0) {
printf("Error: Failed to detect hardware RNG devices\n");
return 1;
}
if (num_devices_found == 0) {
printf("No hardware RNG devices found.\n");
printf("\nSupported devices:\n");
printf(" - TrueRNG Original (VID: %s, PID: %s)\n", TRUERNG_VID, TRUERNG_ORIGINAL_PID);
printf(" - TrueRNG Pro (VID: %s, PID: %s)\n", TRUERNG_VID, TRUERNG_PRO_PID);
printf(" - TrueRNG Pro V2 (VID: %s, PID: %s)\n", TRUERNG_VID, TRUERNG_PRO_V2_PID);
printf("\nPlease connect a TrueRNG or SwiftRNG device and try again.\n");
return 1;
}
// Select device interactively
hardware_rng_device_t selected_device;
if (select_hardware_rng_device_interactive(devices, num_devices_found, &selected_device) != 0) {
printf("Device selection cancelled.\n");
return 1;
}
// Test device speed and estimate completion time
printf("\nTesting %s connection and speed...\n", selected_device.friendly_name);
printf("Device: %s (Type: %d)\n", selected_device.port_path, selected_device.device_type);
// Test with smaller amount (10KB) to avoid hanging on slow/unresponsive devices
const size_t test_bytes = 10 * 1024; // 10KB test (reduced from 100KB)
unsigned char* test_buffer = malloc(test_bytes);
if (!test_buffer) {
printf("Error: Cannot allocate test buffer\n");
return 1;
}
size_t test_collected = 0;
time_t test_start = time(NULL);
// Use non-blocking test to avoid hanging
int test_result = collect_truerng_entropy_from_device(&selected_device, test_buffer, test_bytes, &test_collected, 0);
time_t test_end = time(NULL);
double test_time = difftime(test_end, test_start);
free(test_buffer);
if (test_result != 0) {
printf("Error: Device test failed - cannot establish connection\n");
printf("This may be due to:\n");
printf(" - Device not properly connected\n");
printf(" - Incorrect device type identification\n");
printf(" - Serial port configuration issues\n");
printf(" - Device requires different baud rate or settings\n");
return 1;
}
if (test_collected == 0) {
printf("Error: Device returned no data - check device connection and type\n");
return 1;
}
if (test_time < 1.0) {
test_time = 1.0; // Minimum 1 second to avoid division by zero
}
// Calculate speed and estimate completion time
double bytes_per_second = test_collected / test_time;
double estimated_seconds = target_bytes / bytes_per_second;
double estimated_minutes = estimated_seconds / 60.0;
double estimated_hours = estimated_minutes / 60.0;
printf("✓ Device test successful!\n");
printf(" Test collected: %zu bytes in %.1f seconds\n", test_collected, test_time);
printf(" Speed: %.1f KB/s (%.1f MB/s)\n", bytes_per_second / 1000.0, bytes_per_second / (1000.0 * 1000.0));
printf("\nPad enhancement estimate:\n");
printf(" Pad size: %.2f GB (%zu bytes)\n", (double)target_bytes / (1000.0 * 1000.0 * 1000.0), target_bytes);
if (estimated_hours >= 1.0) {
printf(" Estimated time: %.1f hours\n", estimated_hours);
} else if (estimated_minutes >= 1.0) {
printf(" Estimated time: %.1f minutes\n", estimated_minutes);
} else {
printf(" Estimated time: %.1f seconds\n", estimated_seconds);
}
// Store original permissions and make pad temporarily writable
mode_t original_mode;
if (make_pad_temporarily_writable(pad_path, &original_mode) != 0) {
// If we can't make it writable, check if it's a filesystem issue
if (access(pad_path, F_OK) == 0 && access(pad_path, W_OK) != 0) {
printf("\nError: Cannot make pad file writable: %s\n", pad_path);
printf("Reason: %s\n", strerror(errno));
if (errno == EROFS) {
printf("The filesystem appears to be read-only.\n");
printf("This commonly occurs with:\n");
printf(" - USB drives mounted read-only\n");
printf(" - CD-ROM/DVD drives\n");
printf(" - Network filesystems with read-only access\n");
} else if (errno == EACCES) {
printf("Permission denied. Check file permissions.\n");
}
printf("\nTo fix this issue:\n");
printf("1. Remount the drive read-write: sudo mount -o remount,rw %s\n", pad_path);
printf("2. Copy the pad to local storage, enhance it, then copy back\n");
printf("3. Check file permissions: ls -la '%s'\n", pad_path);
}
return 1;
}
// Ask user for confirmation
printf("\n⚠ This will modify the entire pad file and update its checksum.\n");
printf("The process cannot be interrupted once started.\n");
printf("\nDo you want to continue with hardware entropy enhancement? (y/N): ");
char confirm_input[10];
if (!fgets(confirm_input, sizeof(confirm_input), stdin)) {
printf("Error: Failed to read input\n");
return 1;
}
if (toupper(confirm_input[0]) != 'Y') {
printf("Hardware entropy enhancement cancelled.\n");
return 0;
}
printf("\nStarting hardware entropy enhancement...\n");
// Use streaming collection with selected device // Use streaming collection with selected device
int result = collect_truerng_entropy_streaming_from_device(NULL, pad_chksum, target_bytes, 1, 1); int result = collect_truerng_entropy_streaming_from_device(&selected_device, pad_chksum, target_bytes, 1, 1);
if (result != 0) { if (result != 0) {
printf("Error: TrueRNG streaming entropy collection failed\n"); printf("Error: TrueRNG streaming entropy collection failed\n");
// Restore original permissions before returning
restore_pad_permissions(pad_path, original_mode);
return 1; return 1;
} }
@@ -1161,11 +1558,21 @@ int handle_add_entropy_to_pad(const char* pad_chksum) {
printf(" Old checksum: %.16s...\n", pad_chksum); printf(" Old checksum: %.16s...\n", pad_chksum);
printf(" New checksum: %.16s...\n", new_chksum); printf(" New checksum: %.16s...\n", new_chksum);
printf("✓ Pad files renamed to new checksum\n"); printf("✓ Pad files renamed to new checksum\n");
// Restore permissions on the new pad file
char new_pad_path[1024];
const char* pads_dir = get_current_pads_dir();
snprintf(new_pad_path, sizeof(new_pad_path), "%s/%s.pad", pads_dir, new_chksum);
restore_pad_permissions(new_pad_path, original_mode);
} else if (checksum_result == 2) { } else if (checksum_result == 2) {
printf(" Checksum unchanged (unusual but not an error)\n"); printf(" Checksum unchanged (unusual but not an error)\n");
// Restore original permissions
restore_pad_permissions(pad_path, original_mode);
} else { } else {
printf("⚠ Warning: Checksum update failed (entropy was added successfully)\n"); printf("⚠ Warning: Checksum update failed (entropy was added successfully)\n");
printf(" You may need to manually handle the checksum update\n"); printf(" You may need to manually handle the checksum update\n");
// Restore original permissions before returning
restore_pad_permissions(pad_path, original_mode);
return 1; return 1;
} }
@@ -1205,6 +1612,21 @@ int handle_add_entropy_to_pad(const char* pad_chksum) {
printf("\nProcessing entropy and modifying pad...\n"); printf("\nProcessing entropy and modifying pad...\n");
// Get pad path and manage permissions for traditional entropy addition
if (strlen(pad_path) == 0) {
get_pad_path(pad_chksum, pad_path, state_path);
}
// Store original permissions and make pad temporarily writable
mode_t original_mode;
if (make_pad_temporarily_writable(pad_path, &original_mode) != 0) {
printf("Error: Cannot make pad file writable for entropy addition\n");
// Clear entropy buffer for security
memset(entropy_buffer, 0, MAX_ENTROPY_BUFFER);
free(entropy_buffer);
return 1;
}
// Add entropy to pad // Add entropy to pad
result = add_entropy_to_pad(pad_chksum, entropy_buffer, collected_bytes, 1); result = add_entropy_to_pad(pad_chksum, entropy_buffer, collected_bytes, 1);
@@ -1214,6 +1636,36 @@ int handle_add_entropy_to_pad(const char* pad_chksum) {
if (result != 0) { if (result != 0) {
printf("Error: Failed to add entropy to pad\n"); printf("Error: Failed to add entropy to pad\n");
// Restore original permissions before returning
restore_pad_permissions(pad_path, original_mode);
return 1;
}
// Update checksum after entropy addition for traditional methods
printf("\n🔄 Updating pad checksum...\n");
char new_chksum[65];
int checksum_result = update_pad_checksum_after_entropy(pad_chksum, new_chksum);
if (checksum_result == 0) {
printf("✓ Pad checksum updated successfully\n");
printf(" Old checksum: %.16s...\n", pad_chksum);
printf(" New checksum: %.16s...\n", new_chksum);
printf("✓ Pad files renamed to new checksum\n");
// Restore permissions on the new pad file
char new_pad_path[1024];
const char* pads_dir = get_current_pads_dir();
snprintf(new_pad_path, sizeof(new_pad_path), "%s/%s.pad", pads_dir, new_chksum);
restore_pad_permissions(new_pad_path, original_mode);
} else if (checksum_result == 2) {
printf(" Checksum unchanged (unusual but not an error)\n");
// Restore original permissions
restore_pad_permissions(pad_path, original_mode);
} else {
printf("⚠ Warning: Checksum update failed (entropy was added successfully)\n");
printf(" You may need to manually handle the checksum update\n");
// Restore original permissions before returning
restore_pad_permissions(pad_path, original_mode);
return 1; return 1;
} }

View File

@@ -1,10 +1,12 @@
#include <string.h> #include <string.h>
#include <stdlib.h> #include <stdlib.h>
#include "../include/otp.h" #include <stdio.h>
#include "main.h"
// Global state variables // Global state variables
static char current_pads_dir[512] = DEFAULT_PADS_DIR; static char current_pads_dir[512] = "";
static int is_interactive_mode = 0; static int is_interactive_mode = 0;
static int pads_dir_initialized = 0;
// Terminal dimensions (moved from ui.c to state.c for global access) // Terminal dimensions (moved from ui.c to state.c for global access)
static int terminal_width = 80; // Default fallback width static int terminal_width = 80; // Default fallback width
@@ -13,6 +15,18 @@ static int terminal_height = 24; // Default fallback height
// Getters and setters for global state // Getters and setters for global state
const char* get_current_pads_dir(void) { const char* get_current_pads_dir(void) {
// Initialize pads directory on first access if not already set
if (!pads_dir_initialized && strlen(current_pads_dir) == 0) {
char* home_dir = getenv("HOME");
if (home_dir) {
snprintf(current_pads_dir, sizeof(current_pads_dir), "%s/.otp/pads", home_dir);
} else {
// Fallback to relative path if HOME is not set
strncpy(current_pads_dir, DEFAULT_PADS_DIR, sizeof(current_pads_dir) - 1);
}
current_pads_dir[sizeof(current_pads_dir) - 1] = '\0';
pads_dir_initialized = 1;
}
return current_pads_dir; return current_pads_dir;
} }
@@ -20,6 +34,7 @@ void set_current_pads_dir(const char* dir) {
if (dir) { if (dir) {
strncpy(current_pads_dir, dir, sizeof(current_pads_dir) - 1); strncpy(current_pads_dir, dir, sizeof(current_pads_dir) - 1);
current_pads_dir[sizeof(current_pads_dir) - 1] = '\0'; current_pads_dir[sizeof(current_pads_dir) - 1] = '\0';
pads_dir_initialized = 1;
} }
} }

View File

@@ -15,8 +15,9 @@
#include <termios.h> #include <termios.h>
#include <fcntl.h> #include <fcntl.h>
#include <math.h> #include <math.h>
#include "../nostr_chacha20.h" #include <errno.h>
#include "../include/otp.h" #include "nostr_chacha20.h"
#include "main.h"
// Basic TrueRNG entropy collection function // Basic TrueRNG entropy collection function
int collect_truerng_entropy(unsigned char* entropy_buffer, size_t target_bytes, size_t* collected_bytes, int display_progress) { int collect_truerng_entropy(unsigned char* entropy_buffer, size_t target_bytes, size_t* collected_bytes, int display_progress) {
@@ -35,10 +36,10 @@ int collect_truerng_entropy(unsigned char* entropy_buffer, size_t target_bytes,
if (display_progress) { if (display_progress) {
printf("No hardware RNG devices found.\n"); printf("No hardware RNG devices found.\n");
printf("\nSupported devices:\n"); printf("\nSupported devices:\n");
printf(" - TrueRNG/SwiftRNG (PID: %s, VID: %s)\n", TRUERNG_VID, TRUERNG_PID); printf(" - TrueRNG Original (VID: %s, PID: %s)\n", TRUERNG_VID, TRUERNG_ORIGINAL_PID);
printf(" - TrueRNGpro/SwiftRNGpro (PID: %s, VID: %s)\n", TRUERNGPRO_VID, TRUERNGPRO_PID); printf(" - TrueRNG Pro (VID: %s, PID: %s)\n", TRUERNG_VID, TRUERNG_PRO_PID);
printf(" - TrueRNGproV2/SwiftRNGproV2 (PID: %s, VID: %s)\n", TRUERNGPROV2_VID, TRUERNGPROV2_PID); printf(" - TrueRNG Pro V2 (VID: %s, PID: %s)\n", TRUERNG_VID, TRUERNG_PRO_V2_PID);
printf("\nPlease connect a TrueRNG or SwiftRNG device and try again.\n"); printf("\nPlease connect a TrueRNG device and try again.\n");
} }
return 1; return 1;
} }
@@ -68,47 +69,504 @@ int collect_truerng_entropy(unsigned char* entropy_buffer, size_t target_bytes,
return 0; return 0;
} }
// Wrapper function to match the header declaration // Streaming entropy collection directly to pad file
// Note: Full implementation moved to otp.c during modularization
// This is a placeholder that should be implemented when the full streaming
// functionality is moved to the trng module
int collect_truerng_entropy_streaming_from_device(const hardware_rng_device_t* device, const char* pad_chksum, int collect_truerng_entropy_streaming_from_device(const hardware_rng_device_t* device, const char* pad_chksum,
size_t total_bytes, int display_progress, int entropy_mode) { size_t total_bytes, int display_progress, int entropy_mode) {
// For now, return an error - full implementation needs to be moved from otp.c (void)entropy_mode; // Suppress unused parameter warning
(void)device; // Suppress unused parameter warning if (!device || !pad_chksum || total_bytes == 0) {
(void)pad_chksum; return 1; // Invalid parameters
(void)total_bytes; }
(void)display_progress;
(void)entropy_mode;
fprintf(stderr, "Error: collect_truerng_entropy_streaming_from_device not yet implemented in modular version\n");
return 1; // Error // Get pad file path
char pad_path[1024];
char state_path[1024];
get_pad_path(pad_chksum, pad_path, state_path);
// Check if pad exists and get size
struct stat pad_stat;
if (stat(pad_path, &pad_stat) != 0) {
if (display_progress) {
printf("Error: Pad file not found: %s\n", pad_path);
}
return 1;
}
uint64_t pad_size = pad_stat.st_size;
if (total_bytes > pad_size) {
if (display_progress) {
printf("Error: Requested entropy (%zu bytes) exceeds pad size (%lu bytes)\n", total_bytes, pad_size);
}
return 1;
}
// Open the RNG device
int device_fd = open(device->port_path, O_RDONLY | O_NOCTTY);
if (device_fd < 0) {
if (display_progress) {
printf("Error: Cannot open RNG device %s: %s\n", device->port_path, strerror(errno));
}
return 1;
}
// Configure serial port for this device type
if (configure_rng_serial_port(device_fd, device->device_type) != 0) {
if (display_progress) {
printf("Error: Failed to configure serial port for %s\n", device->friendly_name);
}
close(device_fd);
return 1;
}
// Standard delay for TrueRNG devices
usleep(100000); // 100ms
// Open pad file for read/write
FILE* pad_file = fopen(pad_path, "r+b");
if (!pad_file) {
if (display_progress) {
printf("Error: Cannot open pad file for modification: %s\n", pad_path);
printf("Reason: %s\n", strerror(errno));
// Provide additional diagnostics
if (errno == EROFS) {
printf("The filesystem appears to be read-only. Check if the drive is mounted read-only.\n");
} else if (errno == EACCES) {
printf("Permission denied. Check file permissions and mount options.\n");
} else if (errno == ENOENT) {
printf("File not found. The pad file may have been moved or deleted.\n");
} else if (errno == EISDIR) {
printf("Path is a directory, not a file.\n");
} else {
printf("This may be due to filesystem limitations or mount options.\n");
}
printf("\nTroubleshooting suggestions:\n");
printf("1. Ensure the external drive is mounted read-write: mount -o remount,rw /media/teknari/OTP_01\n");
printf("2. Check file permissions: ls -la '%s'\n", pad_path);
printf("3. Verify the drive supports the required operations\n");
printf("4. Try copying the pad to local storage, enhancing it, then copying back\n");
}
close(device_fd);
return 1;
}
if (display_progress) {
printf("Streaming entropy from %s to pad...\n", device->friendly_name);
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1000.0*1000.0*1000.0), pad_size);
printf("Enhancing entire pad with hardware entropy\n");
}
// Process pad in chunks
unsigned char buffer[64 * 1024]; // 64KB chunks
size_t bytes_processed = 0;
time_t start_time = time(NULL);
int error_occurred = 0;
while (bytes_processed < total_bytes && !error_occurred) {
size_t chunk_size = sizeof(buffer);
if (total_bytes - bytes_processed < chunk_size) {
chunk_size = total_bytes - bytes_processed;
}
// Read entropy from device
ssize_t entropy_read = read(device_fd, buffer, chunk_size);
if (entropy_read < 0) {
if (errno == EINTR) {
continue; // Interrupted, try again
}
if (display_progress) {
printf("Error: Failed to read from TrueRNG device: %s\n", strerror(errno));
printf("Device may have been disconnected during operation.\n");
}
error_occurred = 1;
break;
}
if (entropy_read == 0) {
if (display_progress) {
printf("Error: TrueRNG device returned no data (device disconnected?)\n");
}
error_occurred = 1;
break;
}
// Read current pad data at this position
if (fseek(pad_file, bytes_processed, SEEK_SET) != 0) {
if (display_progress) {
printf("Error: Cannot seek to position %zu in pad file\n", bytes_processed);
}
error_occurred = 1;
break;
}
unsigned char pad_data[64 * 1024];
size_t pad_read = fread(pad_data, 1, entropy_read, pad_file);
if (pad_read != (size_t)entropy_read) {
if (display_progress) {
printf("Error: Cannot read pad data at position %zu\n", bytes_processed);
}
error_occurred = 1;
break;
}
// XOR entropy with existing pad data
for (size_t i = 0; i < (size_t)entropy_read; i++) {
pad_data[i] ^= buffer[i];
}
// Seek back and write modified data
if (fseek(pad_file, bytes_processed, SEEK_SET) != 0) {
if (display_progress) {
printf("Error: Cannot seek back to position %zu in pad file\n", bytes_processed);
}
error_occurred = 1;
break;
}
if (fwrite(pad_data, 1, entropy_read, pad_file) != (size_t)entropy_read) {
if (display_progress) {
printf("Error: Cannot write modified pad data\n");
}
error_occurred = 1;
break;
}
bytes_processed += entropy_read;
// Show progress for large pads
if (display_progress && bytes_processed % (64 * 1024 * 1024) == 0) { // Every 64MB
show_progress(bytes_processed, total_bytes, start_time);
}
}
close(device_fd);
fclose(pad_file);
if (error_occurred) {
return 1;
}
if (display_progress) {
show_progress(total_bytes, total_bytes, start_time);
printf("\n✓ Successfully streamed %zu bytes of hardware entropy to pad\n", bytes_processed);
}
return 0;
} }
// Detect all available hardware RNG devices // Detect all available hardware RNG devices
int detect_all_hardware_rng_devices(hardware_rng_device_t* devices, int max_devices, int* num_devices_found) { int detect_all_hardware_rng_devices(hardware_rng_device_t* devices, int max_devices, int* num_devices_found) {
*num_devices_found = 0; *num_devices_found = 0;
// For now, return empty list - full implementation would scan /dev for TrueRNG devices // Scan /dev directory for serial devices (ttyUSB*, ttyACM*)
// This is a placeholder that should be implemented when the full TRNG functionality DIR* dev_dir = opendir("/dev");
// is moved to the trng module if (!dev_dir) {
return 1; // Error opening /dev
}
(void)devices; // Suppress unused parameter warning struct dirent* entry;
(void)max_devices; while ((entry = readdir(dev_dir)) != NULL && *num_devices_found < max_devices) {
// Check for serial device patterns
if (strncmp(entry->d_name, "ttyUSB", 6) == 0 || strncmp(entry->d_name, "ttyACM", 6) == 0) {
char device_path[512]; // Increased buffer size to prevent truncation
int ret = snprintf(device_path, sizeof(device_path), "/dev/%s", entry->d_name);
if (ret >= (int)sizeof(device_path)) {
continue; // Skip if path would be truncated
}
return 0; // Success but no devices found // Check if this is a TrueRNG/SwiftRNG device by reading VID/PID
char vid[5], pid[5];
if (read_usb_device_info(device_path, vid, pid) == 0) {
hardware_rng_device_type_t device_type = 0;
// Check against known TrueRNG VID/PID combinations
if (strcmp(vid, TRUERNG_VID) == 0 && strcmp(pid, TRUERNG_ORIGINAL_PID) == 0) {
device_type = TRUERNG_ORIGINAL;
} else if (strcmp(vid, TRUERNG_VID) == 0 && strcmp(pid, TRUERNG_PRO_PID) == 0) {
device_type = TRUERNG_PRO;
} else if (strcmp(vid, TRUERNG_VID) == 0 && strcmp(pid, TRUERNG_PRO_V2_PID) == 0) {
device_type = TRUERNG_PRO_V2;
}
if (device_type != 0) {
// Found a TrueRNG/SwiftRNG device
hardware_rng_device_t* device = &devices[*num_devices_found];
strncpy(device->port_path, device_path, sizeof(device->port_path) - 1);
device->device_type = device_type;
strncpy(device->friendly_name, get_truerng_device_name(device_type), sizeof(device->friendly_name) - 1);
// Assume device is working if VID/PID matches (no test needed)
device->is_working = 1;
(*num_devices_found)++;
}
}
}
}
closedir(dev_dir);
return 0; // Success
}
// Configure serial port for different RNG device types
int configure_rng_serial_port(int fd, hardware_rng_device_type_t device_type) {
(void)device_type; // Suppress unused parameter warning - all TrueRNG devices use same config
struct termios tty;
if (tcgetattr(fd, &tty) != 0) {
return 1; // Error getting terminal attributes
}
// TrueRNG configuration - traditional serial settings
// TrueRNG devices: 115200 baud, 8N1, no flow control
cfsetospeed(&tty, B115200);
cfsetispeed(&tty, B115200);
tty.c_cflag = (tty.c_cflag & ~CSIZE) | CS8; // 8-bit chars
tty.c_cflag |= CLOCAL | CREAD; // ignore modem controls, enable reading
tty.c_cflag &= ~(PARENB | PARODD); // no parity
tty.c_cflag &= ~CSTOPB; // 1 stop bit
tty.c_cflag &= ~CRTSCTS; // no hardware flow control
tty.c_iflag &= ~(IXON | IXOFF | IXANY); // no software flow control
tty.c_iflag &= ~(ICANON | ECHO | ECHOE | ISIG); // raw mode
tty.c_oflag &= ~OPOST; // raw output
// Set timeouts for TrueRNG
tty.c_cc[VMIN] = 1; // read at least 1 character
tty.c_cc[VTIME] = 10; // 1 second timeout
if (tcsetattr(fd, TCSANOW, &tty) != 0) {
return 1; // Error setting terminal attributes
}
// Flush any existing data
tcflush(fd, TCIOFLUSH);
return 0; // Success
} }
// Collect entropy from a specific TrueRNG device // Collect entropy from a specific TrueRNG device
int collect_truerng_entropy_from_device(const hardware_rng_device_t* device, unsigned char* entropy_buffer, int collect_truerng_entropy_from_device(const hardware_rng_device_t* device, unsigned char* entropy_buffer,
size_t target_bytes, size_t* collected_bytes, int display_progress) { size_t target_bytes, size_t* collected_bytes, int display_progress) {
// For now, return an error - full implementation needs to be moved from otp.c if (!device || !entropy_buffer || !collected_bytes || target_bytes == 0) {
(void)device; // Suppress unused parameter warning return 1; // Invalid parameters
(void)entropy_buffer; }
(void)target_bytes;
(void)collected_bytes;
(void)display_progress;
fprintf(stderr, "Error: collect_truerng_entropy_from_device not yet implemented in modular version\n");
return 1; // Error // Open the TrueRNG device
} int device_fd = open(device->port_path, O_RDONLY | O_NOCTTY);
if (device_fd < 0) {
if (display_progress) {
printf("Error: Cannot open RNG device %s: %s\n", device->port_path, strerror(errno));
}
return 1;
}
// Configure serial port for this device type
if (configure_rng_serial_port(device_fd, device->device_type) != 0) {
if (display_progress) {
printf("Error: Failed to configure serial port for %s\n", device->friendly_name);
}
close(device_fd);
return 1;
}
// Standard delay for TrueRNG devices
usleep(100000); // 100ms
if (display_progress) {
printf("Collecting %zu bytes from %s...\n", target_bytes, device->friendly_name);
}
// Read entropy data with timeout protection
size_t total_read = 0;
time_t start_time = time(NULL);
time_t last_progress_time = start_time;
while (total_read < target_bytes) {
// Check for overall timeout (5 minutes max for large collections)
time_t current_time = time(NULL);
if (difftime(current_time, start_time) > 300) { // 5 minutes timeout
if (display_progress) {
printf("Error: Collection timeout - device may be unresponsive\n");
}
close(device_fd);
return 1;
}
size_t remaining = target_bytes - total_read;
size_t chunk_size = (remaining > 4096) ? 4096 : remaining; // Read in 4KB chunks
ssize_t bytes_read = read(device_fd, entropy_buffer + total_read, chunk_size);
if (bytes_read < 0) {
if (errno == EINTR) {
continue; // Interrupted, try again
}
if (errno == EAGAIN || errno == EWOULDBLOCK) {
// Timeout occurred, check if we have enough data for a test
if (total_read > 0 && target_bytes > 1024) {
// For testing purposes, we have enough data
break;
}
// For small collections, this is an error
if (display_progress) {
printf("Error: Device read timeout - no data received\n");
}
close(device_fd);
return 1;
}
if (display_progress) {
printf("Error: Failed to read from TrueRNG device: %s\n", strerror(errno));
printf("Device may have been disconnected.\n");
}
close(device_fd);
return 1;
}
if (bytes_read == 0) {
// End of data - this shouldn't happen for RNG devices
if (total_read == 0) {
if (display_progress) {
printf("Error: TrueRNG device returned no data (device disconnected or misconfigured?)\n");
}
close(device_fd);
return 1;
} else {
// We have some data, might be enough for testing
break;
}
}
total_read += bytes_read;
// Show progress
if (display_progress && (total_read % 1024 == 0 || difftime(current_time, last_progress_time) >= 1)) {
show_progress(total_read, target_bytes, start_time);
last_progress_time = current_time;
}
}
close(device_fd);
if (display_progress) {
show_progress(target_bytes, target_bytes, start_time);
printf("\n✓ Successfully collected %zu bytes from TrueRNG device\n", total_read);
}
*collected_bytes = total_read;
return 0;
}
// Read USB device VID/PID information from sysfs
int read_usb_device_info(const char* device_path, char* vid, char* pid) {
// Extract device name from path (e.g., /dev/ttyUSB0 -> ttyUSB0)
const char* device_name = strrchr(device_path, '/');
if (!device_name) device_name = device_path;
else device_name++; // Skip the '/'
// Construct sysfs path for USB device info
char sysfs_path[256];
snprintf(sysfs_path, sizeof(sysfs_path), "/sys/class/tty/%s/device/../idVendor", device_name);
FILE* vid_file = fopen(sysfs_path, "r");
if (!vid_file) {
return 1; // Cannot read VID
}
if (fscanf(vid_file, "%4s", vid) != 1) {
fclose(vid_file);
return 1; // Cannot parse VID
}
fclose(vid_file);
// Read PID
snprintf(sysfs_path, sizeof(sysfs_path), "/sys/class/tty/%s/device/../idProduct", device_name);
FILE* pid_file = fopen(sysfs_path, "r");
if (!pid_file) {
return 1; // Cannot read PID
}
if (fscanf(pid_file, "%4s", pid) != 1) {
fclose(pid_file);
return 1; // Cannot parse PID
}
fclose(pid_file);
return 0; // Success
}
// Get friendly name for hardware RNG device type
const char* get_truerng_device_name(hardware_rng_device_type_t device_type) {
switch (device_type) {
case TRUERNG_ORIGINAL:
return "TrueRNG";
case TRUERNG_PRO:
return "TrueRNG Pro";
case TRUERNG_PRO_V2:
return "TrueRNG Pro V2";
default:
return "Unknown Hardware RNG Device";
}
}
// Test if a hardware RNG device is working by attempting to read from it
int test_hardware_rng_device(const hardware_rng_device_t* device) {
int fd = open(device->port_path, O_RDONLY | O_NONBLOCK);
if (fd < 0) {
return 1; // Cannot open device
}
// Try to read a small amount of data
unsigned char test_buffer[16];
ssize_t bytes_read = read(fd, test_buffer, sizeof(test_buffer));
close(fd);
if (bytes_read <= 0) {
return 1; // Cannot read from device
}
return 0; // Device appears to be working
}
// Interactive device selection for hardware RNG
int select_hardware_rng_device_interactive(hardware_rng_device_t* devices, int num_devices, hardware_rng_device_t* selected_device) {
if (num_devices == 0) {
printf("No hardware RNG devices found.\n");
return 1; // No devices available
}
if (num_devices == 1) {
// Only one device, use it automatically
*selected_device = devices[0];
printf("Using %s (%s)\n\n", devices[0].friendly_name, devices[0].port_path);
return 0;
}
// Multiple devices - let user choose
printf("\nAvailable Hardware RNG Devices:\n");
for (int i = 0; i < num_devices; i++) {
printf("%d. %s (%s)\n",
i + 1,
devices[i].friendly_name,
devices[i].port_path);
}
printf("\nSelect device (1-%d): ", num_devices);
char input[10];
if (fgets(input, sizeof(input), stdin) == NULL) {
return 1; // Input error
}
int choice = atoi(input);
if (choice < 1 || choice > num_devices) {
printf("Invalid selection.\n");
return 1;
}
*selected_device = devices[choice - 1];
printf("Selected: %s (%s)\n", selected_device->friendly_name, selected_device->port_path);
return 0;
}

496
src/ui.c
View File

@@ -15,7 +15,7 @@
#include <termios.h> #include <termios.h>
#include <fcntl.h> #include <fcntl.h>
#include <math.h> #include <math.h>
#include "../include/otp.h" #include "main.h"
// Initialize terminal dimensions // Initialize terminal dimensions
void init_terminal_dimensions(void) { void init_terminal_dimensions(void) {
@@ -99,6 +99,9 @@ int interactive_mode(void) {
case 'F': case 'F':
handle_file_encrypt(); handle_file_encrypt();
break; break;
case 'R':
handle_directory_encrypt();
break;
case 'D': case 'D':
handle_decrypt_menu(); handle_decrypt_menu();
break; break;
@@ -120,14 +123,17 @@ int interactive_mode(void) {
void show_main_menu(void) { void show_main_menu(void) {
printf("\n"); printf("\n");
print_centered_header("Main Menu - OTP v0.3.16", 0); char header[64];
snprintf(header, sizeof(header), "Main Menu - OTP %s", OTP_VERSION);
print_centered_header(header, 0);
printf("\n"); printf("\n");
printf(" \033[4mT\033[0mext encrypt\n"); //TEXT ENCRYPT printf(" \033[4mT\033[0mext encrypt\n"); //TEXT ENCRYPT
printf(" \033[4mF\033[0mile encrypt\n"); //FILE ENCRYPT printf(" \033[4mF\033[0mile encrypt\n"); //FILE ENCRYPT
printf(" \033[4mD\033[0mecrypt\n"); //DECRYPT printf(" Di\033[4mr\033[0mectory encrypt\n"); //DIRECTORY ENCRYPT
printf(" \033[4mP\033[0mads\n"); //PADS printf(" \033[4mD\033[0mecrypt\n"); //DECRYPT
printf(" E\033[4mx\033[0mit\n"); //EXIT printf(" \033[4mP\033[0mads\n"); //PADS
printf(" E\033[4mx\033[0mit\n"); //EXIT
printf("\nSelect option: "); printf("\nSelect option: ");
} }
@@ -150,7 +156,7 @@ int handle_generate_menu(void) {
return 1; return 1;
} }
double size_gb = (double)size / (1024.0 * 1024.0 * 1024.0); double size_gb = (double)size / (1000.0 * 1000.0 * 1000.0);
printf("Generating %.2f GB pad...\n", size_gb); printf("Generating %.2f GB pad...\n", size_gb);
printf("Note: Use 'Add entropy' in Pads menu to enhance randomness after creation.\n"); printf("Note: Use 'Add entropy' in Pads menu to enhance randomness after creation.\n");
@@ -178,7 +184,7 @@ int handle_encrypt_menu(void) {
printf("\nSelect encryption type:\n"); printf("\nSelect encryption type:\n");
printf(" 1. Text message\n"); printf(" 1. Text message\n");
printf(" 2. File\n"); printf(" 2. File\n");
printf("Enter choice (1-2): "); printf("Enter choice (1-2) or 'esc' to cancel: ");
char choice_input[10]; char choice_input[10];
if (!fgets(choice_input, sizeof(choice_input), stdin)) { if (!fgets(choice_input, sizeof(choice_input), stdin)) {
@@ -186,6 +192,14 @@ int handle_encrypt_menu(void) {
return 1; return 1;
} }
choice_input[strcspn(choice_input, "\n")] = 0;
// Check for ESC/cancel
if (is_escape_input(choice_input)) {
printf("Returning to main menu...\n");
return 0;
}
int choice = atoi(choice_input); int choice = atoi(choice_input);
if (choice == 1) { if (choice == 1) {
@@ -207,7 +221,7 @@ int handle_encrypt_menu(void) {
printf("\nFile selection options:\n"); printf("\nFile selection options:\n");
printf(" 1. Type file path directly\n"); printf(" 1. Type file path directly\n");
printf(" 2. Use file manager\n"); printf(" 2. Use file manager\n");
printf("Enter choice (1-2): "); printf("Enter choice (1-2) or 'esc' to cancel: ");
char file_choice[10]; char file_choice[10];
char input_file[512]; char input_file[512];
@@ -217,25 +231,45 @@ int handle_encrypt_menu(void) {
return 1; return 1;
} }
file_choice[strcspn(file_choice, "\n")] = 0;
// Check for ESC/cancel
if (is_escape_input(file_choice)) {
printf("Returning to main menu...\n");
return 0;
}
if (atoi(file_choice) == 2) { if (atoi(file_choice) == 2) {
// Use file manager // Use file manager
if (launch_file_manager(".", input_file, sizeof(input_file)) != 0) { if (launch_file_manager(".", input_file, sizeof(input_file)) != 0) {
printf("Falling back to manual file path entry.\n"); printf("Falling back to manual file path entry.\n");
printf("Enter input file path: "); printf("Enter input file path (or 'esc' to cancel): ");
if (!fgets(input_file, sizeof(input_file), stdin)) { if (!fgets(input_file, sizeof(input_file), stdin)) {
printf("Error: Failed to read input\n"); printf("Error: Failed to read input\n");
return 1; return 1;
} }
input_file[strcspn(input_file, "\n")] = 0; input_file[strcspn(input_file, "\n")] = 0;
// Check for ESC/cancel
if (is_escape_input(input_file)) {
printf("Returning to main menu...\n");
return 0;
}
} }
} else { } else {
// Direct file path input // Direct file path input
printf("Enter input file path: "); printf("Enter input file path (or 'esc' to cancel): ");
if (!fgets(input_file, sizeof(input_file), stdin)) { if (!fgets(input_file, sizeof(input_file), stdin)) {
printf("Error: Failed to read input\n"); printf("Error: Failed to read input\n");
return 1; return 1;
} }
input_file[strcspn(input_file, "\n")] = 0; input_file[strcspn(input_file, "\n")] = 0;
// Check for ESC/cancel
if (is_escape_input(input_file)) {
printf("Returning to main menu...\n");
return 0;
}
} }
// Check if file exists // Check if file exists
@@ -257,14 +291,24 @@ int handle_encrypt_menu(void) {
printf("\nSelect output format:\n"); printf("\nSelect output format:\n");
printf(" 1. Binary (.otp) - preserves file permissions\n"); printf(" 1. Binary (.otp) - preserves file permissions\n");
printf(" 2. ASCII (.otp.asc) - text-safe format\n"); printf(" 2. ASCII (.otp.asc) - text-safe format\n");
printf("Enter choice (1-2): "); printf("Enter choice (1-2) or 'esc' to cancel: ");
char format_input[10]; char format_input[10];
if (!fgets(format_input, sizeof(format_input), stdin)) { if (!fgets(format_input, sizeof(format_input), stdin)) {
printf("Error: Failed to read input\n"); printf("Error: Failed to read input\n");
free(selected_pad);
return 1; return 1;
} }
format_input[strcspn(format_input, "\n")] = 0;
// Check for ESC/cancel
if (is_escape_input(format_input)) {
printf("Returning to main menu...\n");
free(selected_pad);
return 0;
}
int ascii_armor = (atoi(format_input) == 2) ? 1 : 0; int ascii_armor = (atoi(format_input) == 2) ? 1 : 0;
// Generate default output filename with files directory and use enhanced input function // Generate default output filename with files directory and use enhanced input function
@@ -303,6 +347,7 @@ int handle_decrypt_menu(void) {
printf("\n"); printf("\n");
print_centered_header("Smart Decrypt", 0); print_centered_header("Smart Decrypt", 0);
printf("Enter encrypted data (paste ASCII armor), file path, or press Enter to browse files:\n"); printf("Enter encrypted data (paste ASCII armor), file path, or press Enter to browse files:\n");
printf("(Type 'esc' or 'q' to return to main menu)\n");
char input_line[MAX_LINE_LENGTH]; char input_line[MAX_LINE_LENGTH];
if (!fgets(input_line, sizeof(input_line), stdin)) { if (!fgets(input_line, sizeof(input_line), stdin)) {
@@ -313,12 +358,45 @@ int handle_decrypt_menu(void) {
// Remove newline // Remove newline
input_line[strcspn(input_line, "\n")] = 0; input_line[strcspn(input_line, "\n")] = 0;
if (strlen(input_line) == 0) { // Check for ESC/cancel
if (is_escape_input(input_line)) {
printf("Returning to main menu...\n");
return 0;
}
// Trim leading whitespace to handle pasted content better
char* trimmed_input = input_line;
while (*trimmed_input == ' ' || *trimmed_input == '\t') {
trimmed_input++;
}
// Check for ASCII armor FIRST, before checking for empty input
// This handles cases where pasted text starts with the header
if (strncmp(trimmed_input, "-----BEGIN OTP MESSAGE-----", 27) == 0) {
// Looks like ASCII armor - collect the full message
char full_message[MAX_INPUT_SIZE * 4] = {0};
strcat(full_message, input_line);
strcat(full_message, "\n");
printf("Continue pasting the message (end with -----END OTP MESSAGE-----):\n");
char line[MAX_LINE_LENGTH];
while (fgets(line, sizeof(line), stdin)) {
strncat(full_message, line, sizeof(full_message) - strlen(full_message) - 1);
if (strstr(line, "-----END OTP MESSAGE-----")) {
break;
}
}
return decrypt_text(NULL, full_message);
}
else if (strlen(trimmed_input) == 0) {
// Empty input - launch file manager to browse for files // Empty input - launch file manager to browse for files
char selected_file[512]; char selected_file[512];
if (launch_file_manager(get_files_directory(), selected_file, sizeof(selected_file)) != 0) { if (launch_file_manager(get_files_directory(), selected_file, sizeof(selected_file)) != 0) {
printf("Error: Could not launch file manager\n"); printf("File browsing cancelled or failed.\n");
return 1; printf("Returning to main menu...\n");
return 0;
} }
// Generate smart default output filename with files directory and use enhanced input function // Generate smart default output filename with files directory and use enhanced input function
@@ -328,7 +406,15 @@ int handle_decrypt_menu(void) {
temp_default[sizeof(temp_default) - 1] = '\0'; temp_default[sizeof(temp_default) - 1] = '\0';
// Remove common encrypted extensions to get a better default // Remove common encrypted extensions to get a better default
if (strstr(temp_default, ".otp.asc")) { if (strstr(temp_default, ".tar.gz.otp")) {
// Directory archive - remove .tar.gz.otp to get original directory name
char* ext_pos = strstr(temp_default, ".tar.gz.otp");
*ext_pos = '\0';
} else if (strstr(temp_default, ".tar.otp")) {
// Directory archive without compression - remove .tar.otp
char* ext_pos = strstr(temp_default, ".tar.otp");
*ext_pos = '\0';
} else if (strstr(temp_default, ".otp.asc")) {
// Replace .otp.asc with original extension or no extension // Replace .otp.asc with original extension or no extension
char* ext_pos = strstr(temp_default, ".otp.asc"); char* ext_pos = strstr(temp_default, ".otp.asc");
*ext_pos = '\0'; *ext_pos = '\0';
@@ -350,37 +436,43 @@ int handle_decrypt_menu(void) {
return 1; return 1;
} }
return decrypt_file(selected_file, output_file); // Check if it's a directory archive
} if (strstr(selected_file, ".tar.gz.otp") || strstr(selected_file, ".tar.otp")) {
else if (strncmp(input_line, "-----BEGIN OTP MESSAGE-----", 27) == 0) { // It's a directory archive - extract to directory
// Looks like ASCII armor - collect the full message char extract_dir[512];
char full_message[MAX_INPUT_SIZE * 4] = {0}; strncpy(extract_dir, output_file, sizeof(extract_dir) - 1);
strcat(full_message, input_line); extract_dir[sizeof(extract_dir) - 1] = '\0';
strcat(full_message, "\n");
// Remove .tar.gz.otp or .tar.otp extension to get directory name
printf("Continue pasting the message (end with -----END OTP MESSAGE-----):\n"); char* ext = strstr(extract_dir, ".tar.gz.otp");
if (!ext) ext = strstr(extract_dir, ".tar.otp");
char line[MAX_LINE_LENGTH]; if (ext) *ext = '\0';
while (fgets(line, sizeof(line), stdin)) {
strncat(full_message, line, sizeof(full_message) - strlen(full_message) - 1); printf("Extracting directory archive to: %s/\n", extract_dir);
if (strstr(line, "-----END OTP MESSAGE-----")) { return decrypt_and_extract_directory(selected_file, extract_dir);
break; } else {
} return decrypt_file(selected_file, output_file);
} }
return decrypt_text(NULL, full_message);
} }
else { else {
// Check if it looks like a file path // Check if it looks like a file path
if (access(input_line, R_OK) == 0) { if (access(trimmed_input, R_OK) == 0) {
// It's a valid file - decrypt it with enhanced input for output filename // It's a valid file - decrypt it with enhanced input for output filename
char temp_default[512]; char temp_default[512];
char default_output[512]; char default_output[512];
strncpy(temp_default, input_line, sizeof(temp_default) - 1); strncpy(temp_default, trimmed_input, sizeof(temp_default) - 1);
temp_default[sizeof(temp_default) - 1] = '\0'; temp_default[sizeof(temp_default) - 1] = '\0';
// Remove common encrypted extensions to get a better default // Remove common encrypted extensions to get a better default
if (strstr(temp_default, ".otp.asc")) { if (strstr(temp_default, ".tar.gz.otp")) {
// Directory archive - remove .tar.gz.otp to get original directory name
char* ext_pos = strstr(temp_default, ".tar.gz.otp");
*ext_pos = '\0';
} else if (strstr(temp_default, ".tar.otp")) {
// Directory archive without compression - remove .tar.otp
char* ext_pos = strstr(temp_default, ".tar.otp");
*ext_pos = '\0';
} else if (strstr(temp_default, ".otp.asc")) {
// Replace .otp.asc with original extension or no extension // Replace .otp.asc with original extension or no extension
char* ext_pos = strstr(temp_default, ".otp.asc"); char* ext_pos = strstr(temp_default, ".otp.asc");
*ext_pos = '\0'; *ext_pos = '\0';
@@ -402,7 +494,23 @@ int handle_decrypt_menu(void) {
return 1; return 1;
} }
return decrypt_file(input_line, output_file); // Check if it's a directory archive
if (strstr(trimmed_input, ".tar.gz.otp") || strstr(trimmed_input, ".tar.otp")) {
// It's a directory archive - extract to directory
char extract_dir[512];
strncpy(extract_dir, output_file, sizeof(extract_dir) - 1);
extract_dir[sizeof(extract_dir) - 1] = '\0';
// Remove .tar.gz.otp or .tar.otp extension to get directory name
char* ext = strstr(extract_dir, ".tar.gz.otp");
if (!ext) ext = strstr(extract_dir, ".tar.otp");
if (ext) *ext = '\0';
printf("Extracting directory archive to: %s/\n", extract_dir);
return decrypt_and_extract_directory(trimmed_input, extract_dir);
} else {
return decrypt_file(trimmed_input, output_file);
}
} else { } else {
printf("Input not recognized as ASCII armor or valid file path.\n"); printf("Input not recognized as ASCII armor or valid file path.\n");
return 1; return 1;
@@ -470,14 +578,24 @@ int handle_file_encrypt(void) {
printf("\nSelect output format:\n"); printf("\nSelect output format:\n");
printf(" 1. Binary (.otp) - preserves file permissions\n"); printf(" 1. Binary (.otp) - preserves file permissions\n");
printf(" 2. ASCII (.otp.asc) - text-safe format\n"); printf(" 2. ASCII (.otp.asc) - text-safe format\n");
printf("Enter choice (1-2): "); printf("Enter choice (1-2) or 'esc' to cancel: ");
char format_input[10]; char format_input[10];
if (!fgets(format_input, sizeof(format_input), stdin)) { if (!fgets(format_input, sizeof(format_input), stdin)) {
printf("Error: Failed to read input\n"); printf("Error: Failed to read input\n");
free(selected_pad);
return 1; return 1;
} }
format_input[strcspn(format_input, "\n")] = 0;
// Check for ESC/cancel
if (is_escape_input(format_input)) {
printf("Returning to main menu...\n");
free(selected_pad);
return 0;
}
int ascii_armor = (atoi(format_input) == 2) ? 1 : 0; int ascii_armor = (atoi(format_input) == 2) ? 1 : 0;
// Generate default output filename // Generate default output filename
@@ -499,5 +617,303 @@ int handle_file_encrypt(void) {
int result = encrypt_file(selected_pad, input_file, output_filename, ascii_armor); int result = encrypt_file(selected_pad, input_file, output_filename, ascii_armor);
free(selected_pad); free(selected_pad);
return result;
}
// Comparison function for qsort (case-insensitive)
static int compare_dir_strings(const void *a, const void *b) {
return strcasecmp(*(const char**)a, *(const char**)b);
}
// Function to get list of subdirectories
static int get_subdirs(const char *path, char ***subdirs) {
DIR *dir = opendir(path);
if (!dir) return 0;
int count = 0;
int capacity = 10;
*subdirs = malloc(capacity * sizeof(char*));
struct dirent *entry;
while ((entry = readdir(dir)) != NULL) {
if (entry->d_type == DT_DIR) {
// Skip . and ..
if (strcmp(entry->d_name, ".") == 0 || strcmp(entry->d_name, "..") == 0)
continue;
if (count >= capacity) {
capacity *= 2;
*subdirs = realloc(*subdirs, capacity * sizeof(char*));
}
(*subdirs)[count++] = strdup(entry->d_name);
}
}
closedir(dir);
// Sort alphabetically
if (count > 0) {
qsort(*subdirs, count, sizeof(char*), compare_dir_strings);
}
return count;
}
// Function to get a single keypress without echo
static int getch_nav(void) {
struct termios oldt, newt;
int ch;
tcgetattr(STDIN_FILENO, &oldt);
newt = oldt;
newt.c_lflag &= ~(ICANON | ECHO);
tcsetattr(STDIN_FILENO, TCSANOW, &newt);
ch = getchar();
tcsetattr(STDIN_FILENO, TCSANOW, &oldt);
return ch;
}
// Navigate directories with arrow keys
static char* navigate_directory_interactive(void) {
char current_path[PATH_MAX];
char original_path[PATH_MAX];
getcwd(original_path, sizeof(original_path));
getcwd(current_path, sizeof(current_path));
char **subdirs = NULL;
int subdir_count = 0;
int current_index = 0;
printf("\nNavigate with arrow keys (UP/DOWN: cycle, RIGHT: enter, LEFT: back, ENTER: select, Q: cancel)\n");
printf("\033[?25l"); // Hide cursor
while (1) {
// Clear line and show current path
printf("\r\033[K%s", current_path);
// If we have subdirectories and an index, show current selection
if (subdir_count > 0 && current_index < subdir_count) {
printf("/%s", subdirs[current_index]);
}
fflush(stdout);
int ch = getch_nav();
// Handle arrow keys (they come as escape sequences)
if (ch == 27) { // ESC sequence
getch_nav(); // Skip '['
ch = getch_nav();
if (ch == 'A') { // UP arrow
// Load subdirs if not loaded
if (subdirs == NULL) {
subdir_count = get_subdirs(current_path, &subdirs);
current_index = 0;
} else if (subdir_count > 0) {
current_index = (current_index - 1 + subdir_count) % subdir_count;
}
}
else if (ch == 'B') { // DOWN arrow
// Load subdirs if not loaded
if (subdirs == NULL) {
subdir_count = get_subdirs(current_path, &subdirs);
current_index = 0;
} else if (subdir_count > 0) {
current_index = (current_index + 1) % subdir_count;
}
}
else if (ch == 'C') { // RIGHT arrow - go deeper
if (subdir_count > 0 && current_index < subdir_count) {
// Navigate into selected directory
char new_path[PATH_MAX];
snprintf(new_path, sizeof(new_path), "%s/%s", current_path, subdirs[current_index]);
if (chdir(new_path) == 0) {
getcwd(current_path, sizeof(current_path));
// Free old subdirs
for (int i = 0; i < subdir_count; i++) {
free(subdirs[i]);
}
free(subdirs);
subdirs = NULL;
// Load subdirs of new directory and show first one
subdir_count = get_subdirs(current_path, &subdirs);
current_index = 0;
}
}
}
else if (ch == 'D') { // LEFT arrow - go up
if (chdir("..") == 0) {
getcwd(current_path, sizeof(current_path));
// Free old subdirs
for (int i = 0; i < subdir_count; i++) {
free(subdirs[i]);
}
free(subdirs);
subdirs = NULL;
subdir_count = 0;
current_index = 0;
}
}
}
else if (ch == '\n' || ch == '\r') { // ENTER - confirm selection
// If a subdirectory is displayed, navigate into it first
if (subdir_count > 0 && current_index < subdir_count) {
char new_path[PATH_MAX];
snprintf(new_path, sizeof(new_path), "%s/%s", current_path, subdirs[current_index]);
if (chdir(new_path) == 0) {
getcwd(current_path, sizeof(current_path));
}
}
break;
}
else if (ch == 'q' || ch == 'Q') { // Q to quit
printf("\033[?25h\n"); // Show cursor
// Restore original directory
chdir(original_path);
// Clean up
for (int i = 0; i < subdir_count; i++) {
free(subdirs[i]);
}
free(subdirs);
return NULL;
}
}
printf("\033[?25h\n"); // Show cursor
// Clean up
for (int i = 0; i < subdir_count; i++) {
free(subdirs[i]);
}
free(subdirs);
// Restore original directory before returning
char* result = strdup(current_path);
chdir(original_path);
return result;
}
int handle_directory_encrypt(void) {
printf("\n");
print_centered_header("Directory Encrypt", 0);
// Directory selection options
printf("\nDirectory selection options:\n");
printf(" 1. Type directory path directly\n");
printf(" 2. Navigate with arrow keys\n");
printf(" 3. Use file manager (navigate to directory)\n");
printf("Enter choice (1-3) or 'esc' to cancel: ");
char choice_input[10];
char dir_path[512];
if (!fgets(choice_input, sizeof(choice_input), stdin)) {
printf("Error: Failed to read input\n");
return 1;
}
choice_input[strcspn(choice_input, "\n")] = 0;
// Check for ESC/cancel
if (is_escape_input(choice_input)) {
printf("Returning to main menu...\n");
return 0;
}
int choice = atoi(choice_input);
if (choice == 2) {
// Use arrow key navigation
char* selected = navigate_directory_interactive();
if (!selected) {
printf("Directory selection cancelled.\n");
return 0;
}
strncpy(dir_path, selected, sizeof(dir_path) - 1);
dir_path[sizeof(dir_path) - 1] = '\0';
free(selected);
printf("Selected: %s\n", dir_path);
}
else if (choice == 3) {
// Use directory manager
if (launch_directory_manager(".", dir_path, sizeof(dir_path)) != 0) {
printf("Falling back to manual directory path entry.\n");
printf("Enter directory path to encrypt (or 'esc' to cancel): ");
if (!fgets(dir_path, sizeof(dir_path), stdin)) {
printf("Error: Failed to read input\n");
return 1;
}
dir_path[strcspn(dir_path, "\n")] = 0;
// Check for ESC/cancel
if (is_escape_input(dir_path)) {
printf("Returning to main menu...\n");
return 0;
}
}
} else {
// Direct directory path input
printf("Enter directory path to encrypt (or 'esc' to cancel): ");
if (!fgets(dir_path, sizeof(dir_path), stdin)) {
printf("Error: Failed to read input\n");
return 1;
}
dir_path[strcspn(dir_path, "\n")] = 0;
// Check for ESC/cancel
if (is_escape_input(dir_path)) {
printf("Returning to main menu...\n");
return 0;
}
}
// Check if directory exists
struct stat st;
if (stat(dir_path, &st) != 0 || !S_ISDIR(st.st_mode)) {
printf("Error: '%s' is not a valid directory\n", dir_path);
return 1;
}
// Select pad
char* selected_pad = select_pad_interactive("Select Pad for Directory Encryption",
"Select pad (by prefix)",
PAD_FILTER_ALL, 1);
if (!selected_pad) {
printf("Directory encryption cancelled.\n");
return 1;
}
// Generate default output filename - append .tar.gz.otp to the directory path
char default_output[1024];
// Remove trailing slash if present
char clean_path[512];
strncpy(clean_path, dir_path, sizeof(clean_path) - 1);
clean_path[sizeof(clean_path) - 1] = '\0';
size_t path_len = strlen(clean_path);
if (path_len > 0 && clean_path[path_len - 1] == '/') {
clean_path[path_len - 1] = '\0';
}
snprintf(default_output, sizeof(default_output), "%s.tar.gz.otp", clean_path);
// Get output filename
char output_file[512];
if (get_filename_with_default("Output filename:", default_output, output_file, sizeof(output_file)) != 0) {
printf("Error: Failed to read input\n");
free(selected_pad);
return 1;
}
// Encrypt directory
int result = encrypt_directory(dir_path, selected_pad, output_file);
free(selected_pad);
return result; return result;
} }

View File

@@ -15,11 +15,11 @@
#include <termios.h> #include <termios.h>
#include <fcntl.h> #include <fcntl.h>
#include <math.h> #include <math.h>
#include "../include/otp.h" #include "main.h"
// Global variables for preferences // Global variables for preferences
extern char current_pads_dir[512];
static char default_pad_path[1024] = ""; static char default_pad_path[1024] = "";
static char pads_directory[1024] = "";
void show_progress(uint64_t current, uint64_t total, time_t start_time) { void show_progress(uint64_t current, uint64_t total, time_t start_time) {
time_t now = time(NULL); time_t now = time(NULL);
@@ -162,7 +162,8 @@ int launch_text_editor(const char* initial_content, char* result_buffer, size_t
char* get_preferred_file_manager(void) { char* get_preferred_file_manager(void) {
// Try file managers in order of preference // Try file managers in order of preference
const char* file_managers[] = {"ranger", "fzf", "nnn", "lf", NULL}; // fzf is first because it's more intuitive with fuzzy search
const char* file_managers[] = {"fzf", "ranger", "nnn", "lf", NULL};
for (int i = 0; file_managers[i] != NULL; i++) { for (int i = 0; file_managers[i] != NULL; i++) {
char command[512]; char command[512];
@@ -178,7 +179,8 @@ char* get_preferred_file_manager(void) {
int launch_file_manager(const char* start_directory, char* selected_file, size_t buffer_size) { int launch_file_manager(const char* start_directory, char* selected_file, size_t buffer_size) {
char* fm = get_preferred_file_manager(); char* fm = get_preferred_file_manager();
if (!fm) { if (!fm) {
printf("No file manager found. Please install ranger, fzf, nnn, or lf.\n"); printf("No file manager found. Please install fzf, ranger, nnn, or lf.\n");
printf("Recommended: sudo apt install fzf\n");
printf("Falling back to manual file path entry.\n"); printf("Falling back to manual file path entry.\n");
return 1; // Fall back to manual entry return 1; // Fall back to manual entry
} }
@@ -190,6 +192,13 @@ int launch_file_manager(const char* start_directory, char* selected_file, size_t
int result = 1; int result = 1;
printf("Opening %s for file selection...\n", fm); printf("Opening %s for file selection...\n", fm);
// Show helpful instructions based on file manager
if (strcmp(fm, "fzf") == 0) {
printf("Instructions: Type to search, use arrow keys, press Enter to select\n");
} else if (strcmp(fm, "ranger") == 0) {
printf("Instructions: Arrow keys or j/k to navigate, Enter or l to select, q to quit\n");
}
if (strcmp(fm, "ranger") == 0) { if (strcmp(fm, "ranger") == 0) {
snprintf(command, sizeof(command), "cd '%s' && ranger --choosefile=%s", snprintf(command, sizeof(command), "cd '%s' && ranger --choosefile=%s",
@@ -241,6 +250,103 @@ int launch_file_manager(const char* start_directory, char* selected_file, size_t
return 1; // Fall back to manual entry return 1; // Fall back to manual entry
} }
int launch_directory_manager(const char* start_directory, char* selected_dir, size_t buffer_size) {
char* fm = get_preferred_file_manager();
if (!fm) {
printf("No file manager found. Please install fzf, ranger, nnn, or lf.\n");
printf("Recommended: sudo apt install fzf\n");
printf("Falling back to manual directory path entry.\n");
return 1; // Fall back to manual entry
}
char temp_filename[64];
snprintf(temp_filename, sizeof(temp_filename), "/tmp/otp_dir_%ld.tmp", time(NULL));
char command[512];
int result = 1;
printf("Opening %s for directory selection...\n", fm);
// Show helpful instructions based on file manager
if (strcmp(fm, "fzf") == 0) {
printf("Instructions: Type to search, use arrow keys, press Enter to select directory\n");
} else if (strcmp(fm, "ranger") == 0) {
printf("Instructions: Navigate INTO the directory, then press 'q' to quit and select it\n");
}
if (strcmp(fm, "ranger") == 0) {
snprintf(command, sizeof(command), "cd '%s' && ranger --choosedir=%s",
start_directory ? start_directory : ".", temp_filename);
} else if (strcmp(fm, "fzf") == 0) {
// fzf doesn't have directory-only mode easily, use find
snprintf(command, sizeof(command), "cd '%s' && find . -type d | fzf > %s",
start_directory ? start_directory : ".", temp_filename);
} else if (strcmp(fm, "nnn") == 0) {
snprintf(command, sizeof(command), "cd '%s' && nnn -p %s",
start_directory ? start_directory : ".", temp_filename);
} else if (strcmp(fm, "lf") == 0) {
snprintf(command, sizeof(command), "cd '%s' && lf -selection-path=%s",
start_directory ? start_directory : ".", temp_filename);
}
result = system(command);
if (result == 0 || result == 256) { // Some file managers return 256 on success
// Read selected directory from temp file
FILE* temp_file = fopen(temp_filename, "r");
if (temp_file) {
if (fgets(selected_dir, buffer_size, temp_file)) {
// Remove trailing newline
selected_dir[strcspn(selected_dir, "\n\r")] = 0;
// For relative paths, make absolute if needed
if (selected_dir[0] == '.' && selected_dir[1] == '/') {
char current_dir[512];
if (getcwd(current_dir, sizeof(current_dir))) {
char abs_path[1024];
snprintf(abs_path, sizeof(abs_path), "%s/%s", current_dir, selected_dir + 2);
strncpy(selected_dir, abs_path, buffer_size - 1);
selected_dir[buffer_size - 1] = '\0';
}
} else if (selected_dir[0] != '/') {
// Relative path without ./
char current_dir[512];
if (getcwd(current_dir, sizeof(current_dir))) {
char abs_path[1024];
snprintf(abs_path, sizeof(abs_path), "%s/%s", current_dir, selected_dir);
strncpy(selected_dir, abs_path, buffer_size - 1);
selected_dir[buffer_size - 1] = '\0';
}
}
fclose(temp_file);
unlink(temp_filename);
free(fm);
return 0; // Success
}
fclose(temp_file);
}
}
// Clean up and indicate failure
unlink(temp_filename);
free(fm);
return 1; // Fall back to manual entry
}
// Helper function to check if input contains ESC key
int is_escape_input(const char* input) {
// Check for ESC character (ASCII 27) or empty input after ESC
if (input && (input[0] == 27 || (input[0] == '\0' && strlen(input) == 0))) {
return 1;
}
// Also check for literal "esc" or "ESC" typed
if (input && (strcasecmp(input, "esc") == 0 || strcasecmp(input, "q") == 0)) {
return 1;
}
return 0;
}
// Stdin detection functions implementation // Stdin detection functions implementation
int has_stdin_data(void) { int has_stdin_data(void) {
// Check if stdin is a pipe/redirect (not a terminal) // Check if stdin is a pipe/redirect (not a terminal)
@@ -355,7 +461,7 @@ int load_preferences(void) {
} }
// Find the first available pad to set as default // Find the first available pad to set as default
DIR* dir = opendir(current_pads_dir); DIR* dir = opendir(get_current_pads_dir());
if (dir) { if (dir) {
struct dirent* entry; struct dirent* entry;
char first_pad_path[1024]; char first_pad_path[1024];
@@ -364,9 +470,10 @@ int load_preferences(void) {
while ((entry = readdir(dir)) != NULL && !found_pad) { while ((entry = readdir(dir)) != NULL && !found_pad) {
if (strstr(entry->d_name, ".pad") && strlen(entry->d_name) == 68) { if (strstr(entry->d_name, ".pad") && strlen(entry->d_name) == 68) {
// Found a pad file - construct full absolute path // Found a pad file - construct full absolute path
if (current_pads_dir[0] == '/') { const char* pads_dir = get_current_pads_dir();
if (pads_dir[0] == '/') {
// Already absolute path // Already absolute path
int ret = snprintf(first_pad_path, sizeof(first_pad_path), "%s/%s", current_pads_dir, entry->d_name); int ret = snprintf(first_pad_path, sizeof(first_pad_path), "%s/%s", pads_dir, entry->d_name);
if (ret >= (int)sizeof(first_pad_path)) { if (ret >= (int)sizeof(first_pad_path)) {
// Path was truncated, skip this entry // Path was truncated, skip this entry
continue; continue;
@@ -375,14 +482,14 @@ int load_preferences(void) {
// Relative path - make it absolute // Relative path - make it absolute
char current_dir[512]; char current_dir[512];
if (getcwd(current_dir, sizeof(current_dir))) { if (getcwd(current_dir, sizeof(current_dir))) {
int ret = snprintf(first_pad_path, sizeof(first_pad_path), "%s/%s/%s", current_dir, current_pads_dir, entry->d_name); int ret = snprintf(first_pad_path, sizeof(first_pad_path), "%s/%s/%s", current_dir, pads_dir, entry->d_name);
if (ret >= (int)sizeof(first_pad_path)) { if (ret >= (int)sizeof(first_pad_path)) {
// Path was truncated, skip this entry // Path was truncated, skip this entry
continue; continue;
} }
} else { } else {
// Fallback to relative path // Fallback to relative path
int ret = snprintf(first_pad_path, sizeof(first_pad_path), "%s/%s", current_pads_dir, entry->d_name); int ret = snprintf(first_pad_path, sizeof(first_pad_path), "%s/%s", pads_dir, entry->d_name);
if (ret >= (int)sizeof(first_pad_path)) { if (ret >= (int)sizeof(first_pad_path)) {
// Path was truncated, skip this entry // Path was truncated, skip this entry
continue; continue;
@@ -429,6 +536,11 @@ int load_preferences(void) {
if (strcmp(key, "default_pad") == 0) { if (strcmp(key, "default_pad") == 0) {
strncpy(default_pad_path, value, sizeof(default_pad_path) - 1); strncpy(default_pad_path, value, sizeof(default_pad_path) - 1);
default_pad_path[sizeof(default_pad_path) - 1] = '\0'; default_pad_path[sizeof(default_pad_path) - 1] = '\0';
} else if (strcmp(key, "pads_directory") == 0) {
strncpy(pads_directory, value, sizeof(pads_directory) - 1);
pads_directory[sizeof(pads_directory) - 1] = '\0';
// Apply the pads directory from config
set_current_pads_dir(pads_directory);
} }
} }
} }
@@ -519,13 +631,13 @@ uint64_t parse_size_string(const char* size_str) {
} }
if (strcmp(unit, "K") == 0 || strcmp(unit, "KB") == 0) { if (strcmp(unit, "K") == 0 || strcmp(unit, "KB") == 0) {
multiplier = 1024ULL; multiplier = 1000ULL;
} else if (strcmp(unit, "M") == 0 || strcmp(unit, "MB") == 0) { } else if (strcmp(unit, "M") == 0 || strcmp(unit, "MB") == 0) {
multiplier = 1024ULL * 1024ULL; multiplier = 1000ULL * 1000ULL;
} else if (strcmp(unit, "G") == 0 || strcmp(unit, "GB") == 0) { } else if (strcmp(unit, "G") == 0 || strcmp(unit, "GB") == 0) {
multiplier = 1024ULL * 1024ULL * 1024ULL; multiplier = 1000ULL * 1000ULL * 1000ULL;
} else if (strcmp(unit, "T") == 0 || strcmp(unit, "TB") == 0) { } else if (strcmp(unit, "T") == 0 || strcmp(unit, "TB") == 0) {
multiplier = 1024ULL * 1024ULL * 1024ULL * 1024ULL; multiplier = 1000ULL * 1000ULL * 1000ULL * 1000ULL;
} else { } else {
return 0; // Invalid unit return 0; // Invalid unit
} }
@@ -641,7 +753,7 @@ void get_directory_display(const char* file_path, char* result, size_t result_si
} }
// Current working directory // Current working directory
if (strcmp(dir_path, ".") == 0 || strcmp(dir_path, current_pads_dir) == 0) { if (strcmp(dir_path, ".") == 0 || strcmp(dir_path, get_current_pads_dir()) == 0) {
strncpy(result, "pads", result_size - 1); strncpy(result, "pads", result_size - 1);
result[result_size - 1] = '\0'; result[result_size - 1] = '\0';
return; return;
@@ -1032,6 +1144,12 @@ int save_preferences(void) {
fprintf(file, "# OTP Preferences File\n"); fprintf(file, "# OTP Preferences File\n");
fprintf(file, "# This file is automatically generated and updated by the OTP program\n\n"); fprintf(file, "# This file is automatically generated and updated by the OTP program\n\n");
// Save pads directory
const char* current_pads = get_current_pads_dir();
if (current_pads && strlen(current_pads) > 0) {
fprintf(file, "pads_directory=%s\n", current_pads);
}
if (strlen(default_pad_path) > 0) { if (strlen(default_pad_path) > 0) {
fprintf(file, "default_pad=%s\n", default_pad_path); fprintf(file, "default_pad=%s\n", default_pad_path);
} }

27
test.sh
View File

@@ -1,27 +0,0 @@
#!/bin/bash
echo "Testing OTP Cipher Implementation"
echo "================================="
# Test 1: Generate a pad
echo "Test 1: Generating pad..."
./otp generate test 2
echo
# Test 2: Check if files were created
echo "Test 2: Checking generated files..."
ls -la test.pad test.state
echo
# Test 3: Test encryption
echo "Test 3: Testing encryption..."
echo "Secret Message" | ./otp encrypt test > encrypted_output.txt
cat encrypted_output.txt
echo
# Test 4: Test decryption
echo "Test 4: Testing decryption..."
cat encrypted_output.txt | ./otp decrypt test
echo
echo "Tests completed!"

23
tests/temp_device_test.c Normal file
View File

@@ -0,0 +1,23 @@
#include <stdio.h>
#include <stdlib.h>
#include "include/otp.h"
int main(int argc, char* argv[]) {
(void)argc; (void)argv;
hardware_rng_device_t devices[10];
int num_devices_found = 0;
if (detect_all_hardware_rng_devices(devices, 10, &num_devices_found) != 0) {
printf("ERROR: Device detection failed\n");
return 1;
}
printf("DEVICES_FOUND:%d\n", num_devices_found);
for (int i = 0; i < num_devices_found; i++) {
printf("DEVICE:%d:%s:%d:%s\n", i, devices[i].port_path, devices[i].device_type, devices[i].friendly_name);
}
return 0;
}

499
tests/test.sh Executable file
View File

@@ -0,0 +1,499 @@
#!/bin/bash
# Hardware RNG Device Testing Script
# Tests all three detected hardware RNG devices for functionality
# Author: OTP Cipher Implementation
# Version: 1.0
set -e # Exit on any error
echo "========================================================================"
echo "Hardware RNG Device Testing Script - OTP Cipher v0.3.16"
echo "========================================================================"
echo
# Colors for output
RED='\033[0;31m'
GREEN='\033[0;32m'
YELLOW='\033[1;33m'
BLUE='\033[0;34m'
NC='\033[0m' # No Color
# Test counters
TOTAL_TESTS=0
PASSED_TESTS=0
FAILED_TESTS=0
# Function to print test results
print_result() {
local test_name="$1"
local result="$2"
local details="$3"
TOTAL_TESTS=$((TOTAL_TESTS + 1))
if [ "$result" = "PASS" ]; then
echo -e "${GREEN}✓ PASS${NC}: $test_name"
PASSED_TESTS=$((PASSED_TESTS + 1))
elif [ "$result" = "FAIL" ]; then
echo -e "${RED}✗ FAIL${NC}: $test_name"
FAILED_TESTS=$((FAILED_TESTS + 1))
if [ -n "$details" ]; then
echo -e " ${RED}Error:${NC} $details"
fi
elif [ "$result" = "SKIP" ]; then
echo -e "${YELLOW}⚠ SKIP${NC}: $test_name"
if [ -n "$details" ]; then
echo -e " ${YELLOW}Reason:${NC} $details"
fi
fi
}
# Function to test device detection
test_device_detection() {
echo -e "${BLUE}=== Device Detection Tests ===${NC}"
echo
# Test 1: Check if devices are detected
echo "Scanning for hardware RNG devices..."
# Create a temporary test program to check device detection
cat > temp_device_test.c << 'EOF'
#include <stdio.h>
#include <stdlib.h>
#include "include/otp.h"
int main(int argc, char* argv[]) {
(void)argc; (void)argv; // Suppress unused parameter warnings
hardware_rng_device_t devices[10];
int num_devices_found = 0;
if (detect_all_hardware_rng_devices(devices, 10, &num_devices_found) != 0) {
printf("ERROR: Device detection failed\n");
return 1;
}
printf("DEVICES_FOUND:%d\n", num_devices_found);
for (int i = 0; i < num_devices_found; i++) {
printf("DEVICE:%d:%s:%d:%s\n", i, devices[i].port_path, devices[i].device_type, devices[i].friendly_name);
}
return 0;
}
EOF
# Compile the test program
if gcc -Wall -Wextra -std=c99 -Iinclude -o temp_device_test temp_device_test.c src/trng.o src/util.o src/state.o src/pads.o src/crypto.o src/entropy.o src/ui.o nostr_chacha20.o -lm 2>/dev/null; then
# Run device detection
DEVICE_OUTPUT=$(./temp_device_test 2>/dev/null)
DEVICE_COUNT=$(echo "$DEVICE_OUTPUT" | grep "DEVICES_FOUND:" | cut -d: -f2)
if [ "$DEVICE_COUNT" -gt 0 ]; then
print_result "Hardware RNG device detection" "PASS" "Found $DEVICE_COUNT devices"
# Parse device information
echo "$DEVICE_OUTPUT" | grep "DEVICE:" | while IFS=: read -r prefix index port_path device_type friendly_name; do
echo " Device $index: $friendly_name at $port_path (Type: $device_type)"
done
echo
# Store device info for later tests
echo "$DEVICE_OUTPUT" > temp_devices.txt
else
print_result "Hardware RNG device detection" "FAIL" "No devices found"
echo " Expected devices: TrueRNG, SwiftRNG variants"
echo " Check USB connections and device permissions"
echo
fi
# Clean up
rm -f temp_device_test temp_device_test.c
else
print_result "Device detection compilation" "FAIL" "Could not compile test program"
fi
}
# Function to test individual device connectivity
test_device_connectivity() {
echo -e "${BLUE}=== Device Connectivity Tests ===${NC}"
echo
if [ ! -f temp_devices.txt ]; then
print_result "Device connectivity tests" "SKIP" "No devices detected in previous test"
return
fi
DEVICE_COUNT=$(grep "DEVICES_FOUND:" temp_devices.txt | cut -d: -f2)
if [ "$DEVICE_COUNT" -eq 0 ]; then
print_result "Device connectivity tests" "SKIP" "No devices available for testing"
return
fi
# Test each detected device
grep "DEVICE:" temp_devices.txt | while IFS=: read -r prefix index port_path device_type friendly_name; do
echo "Testing device: $friendly_name at $port_path"
# Create device-specific test
cat > temp_connectivity_test.c << 'EOF'
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <time.h>
#include "include/otp.h"
int main(int argc, char* argv[]) {
if (argc != 4) {
printf("Usage: %s <port_path> <device_type> <friendly_name>\n", argv[0]);
return 1;
}
hardware_rng_device_t device;
snprintf(device.port_path, sizeof(device.port_path), "%s", argv[1]);
device.device_type = atoi(argv[2]);
snprintf(device.friendly_name, sizeof(device.friendly_name), "%s", argv[3]);
device.is_working = 0;
// Test with small buffer (1KB) and short timeout
const size_t test_bytes = 1024;
unsigned char* test_buffer = malloc(test_bytes);
if (!test_buffer) {
printf("ERROR: Cannot allocate test buffer\n");
return 1;
}
size_t collected = 0;
time_t start_time = time(NULL);
printf("TESTING:%s\n", device.friendly_name);
// Test device connectivity with timeout
int result = collect_truerng_entropy_from_device(&device, test_buffer, test_bytes, &collected, 0);
time_t end_time = time(NULL);
double test_duration = difftime(end_time, start_time);
if (result == 0 && collected > 0) {
double speed_kbps = (collected / 1024.0) / (test_duration > 0 ? test_duration : 1.0);
printf("SUCCESS:%zu:%0.2f:%0.2f\n", collected, test_duration, speed_kbps);
} else {
printf("FAILED:%d:%zu:%0.2f\n", result, collected, test_duration);
}
free(test_buffer);
return 0;
}
EOF
# Compile and run connectivity test
if gcc -Wall -Wextra -std=c99 -Iinclude -o temp_connectivity_test temp_connectivity_test.c src/trng.o src/util.o src/state.o src/pads.o src/crypto.o src/entropy.o src/ui.o nostr_chacha20.o -lm 2>/dev/null; then
# Run test with timeout to prevent hanging
CONNECTIVITY_OUTPUT=$(timeout 30s ./temp_connectivity_test "$port_path" "$device_type" "$friendly_name" 2>/dev/null || echo "TIMEOUT")
if echo "$CONNECTIVITY_OUTPUT" | grep -q "SUCCESS:"; then
# Parse success output
SUCCESS_LINE=$(echo "$CONNECTIVITY_OUTPUT" | grep "SUCCESS:")
COLLECTED=$(echo "$SUCCESS_LINE" | cut -d: -f2)
DURATION=$(echo "$SUCCESS_LINE" | cut -d: -f3)
SPEED=$(echo "$SUCCESS_LINE" | cut -d: -f4)
print_result "Device connectivity: $friendly_name" "PASS" "Collected ${COLLECTED} bytes in ${DURATION}s (${SPEED} KB/s)"
elif echo "$CONNECTIVITY_OUTPUT" | grep -q "FAILED:"; then
# Parse failure output
FAILED_LINE=$(echo "$CONNECTIVITY_OUTPUT" | grep "FAILED:")
ERROR_CODE=$(echo "$FAILED_LINE" | cut -d: -f2)
COLLECTED=$(echo "$FAILED_LINE" | cut -d: -f3)
print_result "Device connectivity: $friendly_name" "FAIL" "Error code $ERROR_CODE, collected $COLLECTED bytes"
elif echo "$CONNECTIVITY_OUTPUT" | grep -q "TIMEOUT"; then
print_result "Device connectivity: $friendly_name" "FAIL" "Test timed out after 30 seconds"
else
print_result "Device connectivity: $friendly_name" "FAIL" "Unexpected test output"
fi
else
print_result "Device connectivity test compilation: $friendly_name" "FAIL" "Could not compile test program"
fi
echo
done
# Clean up
rm -f temp_connectivity_test temp_connectivity_test.c
}
# Function to test device configuration
test_device_configuration() {
echo -e "${BLUE}=== Device Configuration Tests ===${NC}"
echo
if [ ! -f temp_devices.txt ]; then
print_result "Device configuration tests" "SKIP" "No devices detected"
return
fi
# Test serial port configuration for each device type
grep "DEVICE:" temp_devices.txt | while IFS=: read -r prefix index port_path device_type friendly_name; do
echo "Testing serial configuration for: $friendly_name"
# Create configuration test
cat > temp_config_test.c << 'EOF'
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <termios.h>
#include "include/otp.h"
int main(int argc, char* argv[]) {
if (argc != 3) {
printf("Usage: %s <port_path> <device_type>\n", argv[0]);
return 1;
}
const char* port_path = argv[1];
hardware_rng_device_type_t device_type = atoi(argv[2]);
printf("TESTING_CONFIG:%s:%d\n", port_path, device_type);
// Test opening the device
int fd = open(port_path, O_RDONLY | O_NOCTTY | O_NONBLOCK);
if (fd < 0) {
printf("FAILED:Cannot open device\n");
return 1;
}
// Test configuring the serial port
int config_result = configure_rng_serial_port(fd, device_type);
if (config_result == 0) {
printf("SUCCESS:Serial port configured successfully\n");
} else {
printf("FAILED:Serial port configuration failed\n");
}
close(fd);
return 0;
}
EOF
# Compile and run configuration test
if gcc -Wall -Wextra -std=c99 -Iinclude -o temp_config_test temp_config_test.c src/trng.o src/util.o src/state.o src/ui.o -lm 2>/dev/null; then
CONFIG_OUTPUT=$(./temp_config_test "$port_path" "$device_type" 2>/dev/null || echo "ERROR")
if echo "$CONFIG_OUTPUT" | grep -q "SUCCESS:"; then
print_result "Serial configuration: $friendly_name" "PASS" "Port configured successfully"
elif echo "$CONFIG_OUTPUT" | grep -q "FAILED:"; then
REASON=$(echo "$CONFIG_OUTPUT" | grep "FAILED:" | cut -d: -f2)
print_result "Serial configuration: $friendly_name" "FAIL" "$REASON"
else
print_result "Serial configuration: $friendly_name" "FAIL" "Unexpected configuration result"
fi
else
print_result "Configuration test compilation: $friendly_name" "FAIL" "Could not compile test program"
fi
done
echo
# Clean up
rm -f temp_config_test temp_config_test.c
}
# Function to test entropy quality
test_entropy_quality() {
echo -e "${BLUE}=== Entropy Quality Tests ===${NC}"
echo
if [ ! -f temp_devices.txt ]; then
print_result "Entropy quality tests" "SKIP" "No devices detected"
return
fi
# Test entropy quality for working devices
grep "DEVICE:" temp_devices.txt | while IFS=: read -r prefix index port_path device_type friendly_name; do
echo "Testing entropy quality for: $friendly_name"
# Create entropy quality test
cat > temp_quality_test.c << 'EOF'
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include "include/otp.h"
// Simple entropy quality check
double calculate_byte_entropy(unsigned char* data, size_t length) {
int counts[256] = {0};
double entropy = 0.0;
// Count byte frequencies
for (size_t i = 0; i < length; i++) {
counts[data[i]]++;
}
// Calculate Shannon entropy
for (int i = 0; i < 256; i++) {
if (counts[i] > 0) {
double p = (double)counts[i] / length;
entropy -= p * log2(p);
}
}
return entropy;
}
int main(int argc, char* argv[]) {
if (argc != 4) {
printf("Usage: %s <port_path> <device_type> <friendly_name>\n", argv[0]);
return 1;
}
hardware_rng_device_t device;
snprintf(device.port_path, sizeof(device.port_path), "%s", argv[1]);
device.device_type = atoi(argv[2]);
snprintf(device.friendly_name, sizeof(device.friendly_name), "%s", argv[3]);
// Test with 4KB sample
const size_t test_bytes = 4096;
unsigned char* test_buffer = malloc(test_bytes);
if (!test_buffer) {
printf("ERROR: Cannot allocate test buffer\n");
return 1;
}
size_t collected = 0;
printf("TESTING_QUALITY:%s\n", device.friendly_name);
// Collect entropy sample
int result = collect_truerng_entropy_from_device(&device, test_buffer, test_bytes, &collected, 0);
if (result == 0 && collected >= 1024) { // Need at least 1KB for meaningful analysis
double entropy = calculate_byte_entropy(test_buffer, collected);
double entropy_percentage = (entropy / 8.0) * 100.0; // Max entropy is 8 bits per byte
if (entropy_percentage >= 95.0) {
printf("EXCELLENT:%0.2f:%zu\n", entropy_percentage, collected);
} else if (entropy_percentage >= 85.0) {
printf("GOOD:%0.2f:%zu\n", entropy_percentage, collected);
} else if (entropy_percentage >= 70.0) {
printf("FAIR:%0.2f:%zu\n", entropy_percentage, collected);
} else {
printf("POOR:%0.2f:%zu\n", entropy_percentage, collected);
}
} else {
printf("FAILED:%d:%zu\n", result, collected);
}
free(test_buffer);
return 0;
}
EOF
# Compile and run quality test
if gcc -Wall -Wextra -std=c99 -Iinclude -o temp_quality_test temp_quality_test.c src/trng.o src/util.o src/state.o src/ui.o -lm 2>/dev/null; then
QUALITY_OUTPUT=$(timeout 30s ./temp_quality_test "$port_path" "$device_type" "$friendly_name" 2>/dev/null || echo "TIMEOUT")
if echo "$QUALITY_OUTPUT" | grep -q "EXCELLENT:"; then
QUALITY_LINE=$(echo "$QUALITY_OUTPUT" | grep "EXCELLENT:")
PERCENTAGE=$(echo "$QUALITY_LINE" | cut -d: -f2)
BYTES=$(echo "$QUALITY_LINE" | cut -d: -f3)
print_result "Entropy quality: $friendly_name" "PASS" "Excellent quality (${PERCENTAGE}% entropy, ${BYTES} bytes)"
elif echo "$QUALITY_OUTPUT" | grep -q "GOOD:"; then
QUALITY_LINE=$(echo "$QUALITY_OUTPUT" | grep "GOOD:")
PERCENTAGE=$(echo "$QUALITY_LINE" | cut -d: -f2)
BYTES=$(echo "$QUALITY_LINE" | cut -d: -f3)
print_result "Entropy quality: $friendly_name" "PASS" "Good quality (${PERCENTAGE}% entropy, ${BYTES} bytes)"
elif echo "$QUALITY_OUTPUT" | grep -q "FAIR:"; then
QUALITY_LINE=$(echo "$QUALITY_OUTPUT" | grep "FAIR:")
PERCENTAGE=$(echo "$QUALITY_LINE" | cut -d: -f2)
BYTES=$(echo "$QUALITY_LINE" | cut -d: -f3)
print_result "Entropy quality: $friendly_name" "PASS" "Fair quality (${PERCENTAGE}% entropy, ${BYTES} bytes)"
elif echo "$QUALITY_OUTPUT" | grep -q "POOR:"; then
QUALITY_LINE=$(echo "$QUALITY_OUTPUT" | grep "POOR:")
PERCENTAGE=$(echo "$QUALITY_LINE" | cut -d: -f2)
BYTES=$(echo "$QUALITY_LINE" | cut -d: -f3)
print_result "Entropy quality: $friendly_name" "FAIL" "Poor quality (${PERCENTAGE}% entropy, ${BYTES} bytes)"
elif echo "$QUALITY_OUTPUT" | grep -q "FAILED:"; then
print_result "Entropy quality: $friendly_name" "FAIL" "Could not collect sufficient entropy for analysis"
elif echo "$QUALITY_OUTPUT" | grep -q "TIMEOUT"; then
print_result "Entropy quality: $friendly_name" "FAIL" "Quality test timed out"
else
print_result "Entropy quality: $friendly_name" "FAIL" "Unexpected quality test output"
fi
else
print_result "Quality test compilation: $friendly_name" "FAIL" "Could not compile test program"
fi
done
echo
# Clean up
rm -f temp_quality_test temp_quality_test.c
}
# Function to print final summary
print_summary() {
echo
echo "========================================================================"
echo -e "${BLUE}Test Summary${NC}"
echo "========================================================================"
echo "Total tests run: $TOTAL_TESTS"
echo -e "Passed: ${GREEN}$PASSED_TESTS${NC}"
echo -e "Failed: ${RED}$FAILED_TESTS${NC}"
echo -e "Success rate: $(( (PASSED_TESTS * 100) / (TOTAL_TESTS > 0 ? TOTAL_TESTS : 1) ))%"
echo
if [ $FAILED_TESTS -eq 0 ]; then
echo -e "${GREEN}🎉 All tests passed! Hardware RNG devices are working correctly.${NC}"
elif [ $PASSED_TESTS -gt $FAILED_TESTS ]; then
echo -e "${YELLOW}⚠ Some tests failed, but most devices are working.${NC}"
echo "Check the failed tests above for specific device issues."
else
echo -e "${RED}❌ Multiple test failures detected.${NC}"
echo "Hardware RNG devices may have connectivity or configuration issues."
fi
echo
}
# Main test execution
main() {
echo "Starting comprehensive hardware RNG device testing..."
echo "This will test device detection, connectivity, configuration, and entropy quality."
echo
# Ensure the OTP binary exists
if [ ! -f "./otp" ]; then
echo -e "${RED}Error: OTP binary not found. Please run 'make' first.${NC}"
exit 1
fi
# Run all test suites
test_device_detection
test_device_connectivity
test_device_configuration
test_entropy_quality
# Clean up temporary files
rm -f temp_devices.txt
# Print final summary
print_summary
}
# Run main function
main "$@"

BIN
tests/test_chacha20_extended Executable file

Binary file not shown.

View File

@@ -0,0 +1,263 @@
/*
* test_chacha20_extended.c - Test ChaCha20 extended counter implementation
*
* This test verifies that the extended counter properly handles:
* 1. Counter overflow at 2^32 blocks (256GB boundary)
* 2. Correct keystream generation across the overflow boundary
* 3. No duplicate keystream blocks
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include "../src/nostr_chacha20.h"
#define TEST_BLOCK_SIZE 64
#define BLOCKS_NEAR_OVERFLOW 10 // Test blocks around overflow point
// Test helper: Compare two blocks for equality
int blocks_equal(const uint8_t* block1, const uint8_t* block2, size_t len) {
return memcmp(block1, block2, len) == 0;
}
// Test 1: Verify extended counter handles overflow correctly
int test_counter_overflow() {
printf("Test 1: Counter overflow handling\n");
printf(" Testing counter transition from 0xFFFFFFFF to 0x00000000...\n");
uint8_t key[32];
uint8_t nonce[8];
uint8_t input[TEST_BLOCK_SIZE];
uint8_t output1[TEST_BLOCK_SIZE];
uint8_t output2[TEST_BLOCK_SIZE];
uint8_t output3[TEST_BLOCK_SIZE];
// Initialize test data
memset(key, 0xAA, 32);
memset(nonce, 0xBB, 8);
memset(input, 0, TEST_BLOCK_SIZE);
// Test at counter_low = 0xFFFFFFFE, counter_high = 0
uint32_t counter_low = 0xFFFFFFFE;
uint32_t counter_high = 0;
printf(" Block at counter_low=0xFFFFFFFE, counter_high=0...\n");
if (chacha20_encrypt_extended(key, counter_low, counter_high, nonce,
input, output1, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED: Error at counter_low=0xFFFFFFFE\n");
return 1;
}
// Test at counter_low = 0xFFFFFFFF, counter_high = 0
counter_low = 0xFFFFFFFF;
printf(" Block at counter_low=0xFFFFFFFF, counter_high=0...\n");
if (chacha20_encrypt_extended(key, counter_low, counter_high, nonce,
input, output2, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED: Error at counter_low=0xFFFFFFFF\n");
return 1;
}
// Test at counter_low = 0x00000000, counter_high = 1 (after overflow)
counter_low = 0x00000000;
counter_high = 1;
printf(" Block at counter_low=0x00000000, counter_high=1...\n");
if (chacha20_encrypt_extended(key, counter_low, counter_high, nonce,
input, output3, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED: Error at counter_low=0x00000000, counter_high=1\n");
return 1;
}
// Verify all three blocks are different (no keystream reuse)
if (blocks_equal(output1, output2, TEST_BLOCK_SIZE)) {
printf(" ❌ FAILED: Blocks at 0xFFFFFFFE and 0xFFFFFFFF are identical!\n");
return 1;
}
if (blocks_equal(output2, output3, TEST_BLOCK_SIZE)) {
printf(" ❌ FAILED: Blocks at 0xFFFFFFFF,0 and 0x00000000,1 are identical!\n");
return 1;
}
if (blocks_equal(output1, output3, TEST_BLOCK_SIZE)) {
printf(" ❌ FAILED: Blocks at 0xFFFFFFFE,0 and 0x00000000,1 are identical!\n");
return 1;
}
printf(" ✓ All blocks are unique across overflow boundary\n");
printf(" ✓ PASSED\n\n");
return 0;
}
// Test 2: Simulate processing data that crosses 256GB boundary
int test_large_file_simulation() {
printf("Test 2: Large file simulation (256GB+ boundary)\n");
printf(" Simulating processing across 256GB boundary...\n");
uint8_t key[32];
uint8_t nonce[8];
uint8_t input[1024];
uint8_t output[1024];
// Initialize test data
memset(key, 0x55, 32);
memset(nonce, 0x77, 8);
for (int i = 0; i < 1024; i++) {
input[i] = i & 0xFF;
}
// Simulate being at 256GB - 512 bytes (just before overflow)
// 256GB = 2^32 blocks * 64 bytes = 274,877,906,944 bytes
// Block number at 256GB - 512 bytes = 2^32 - 8 blocks
uint32_t counter_low = 0xFFFFFFF8; // 2^32 - 8
uint32_t counter_high = 0;
printf(" Processing 1KB starting at block 0xFFFFFFF8 (256GB - 512 bytes)...\n");
// This should cross the overflow boundary
int result = chacha20_encrypt_extended(key, counter_low, counter_high, nonce,
input, output, 1024);
if (result != 0) {
printf(" ❌ FAILED: Error processing data across 256GB boundary\n");
return 1;
}
printf(" ✓ Successfully processed data across 256GB boundary\n");
printf(" ✓ PASSED\n\n");
return 0;
}
// Test 3: Verify extended vs standard ChaCha20 compatibility
int test_compatibility() {
printf("Test 3: Compatibility with standard ChaCha20\n");
printf(" Verifying extended mode matches standard mode when counter_high=0...\n");
uint8_t key[32];
uint8_t nonce_standard[12];
uint8_t nonce_reduced[8];
uint8_t input[TEST_BLOCK_SIZE];
uint8_t output_standard[TEST_BLOCK_SIZE];
uint8_t output_extended[TEST_BLOCK_SIZE];
// Initialize test data
memset(key, 0x33, 32);
memset(nonce_standard, 0x44, 12);
memcpy(nonce_reduced, nonce_standard + 4, 8); // Extract last 8 bytes
memset(input, 0, TEST_BLOCK_SIZE);
uint32_t counter = 42;
// Standard ChaCha20
if (chacha20_encrypt(key, counter, nonce_standard, input,
output_standard, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED: Standard ChaCha20 error\n");
return 1;
}
// Extended ChaCha20 with counter_high=0 and matching nonce
// The extended version builds nonce as [counter_high][nonce_reduced]
// So we need to ensure the first 4 bytes of nonce_standard are 0
uint8_t nonce_standard_zero[12] = {0};
memcpy(nonce_standard_zero + 4, nonce_reduced, 8);
if (chacha20_encrypt(key, counter, nonce_standard_zero, input,
output_standard, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED: Standard ChaCha20 error\n");
return 1;
}
if (chacha20_encrypt_extended(key, counter, 0, nonce_reduced, input,
output_extended, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED: Extended ChaCha20 error\n");
return 1;
}
// Compare outputs
if (!blocks_equal(output_standard, output_extended, TEST_BLOCK_SIZE)) {
printf(" ❌ FAILED: Extended mode output differs from standard mode\n");
printf(" First 16 bytes of standard: ");
for (int i = 0; i < 16; i++) printf("%02x ", output_standard[i]);
printf("\n First 16 bytes of extended: ");
for (int i = 0; i < 16; i++) printf("%02x ", output_extended[i]);
printf("\n");
return 1;
}
printf(" ✓ Extended mode matches standard mode when counter_high=0\n");
printf(" ✓ PASSED\n\n");
return 0;
}
// Test 4: Stress test - verify no errors at extreme counter values
int test_extreme_values() {
printf("Test 4: Extreme counter values\n");
printf(" Testing at various extreme counter positions...\n");
uint8_t key[32];
uint8_t nonce[8];
uint8_t input[TEST_BLOCK_SIZE];
uint8_t output[TEST_BLOCK_SIZE];
memset(key, 0x99, 32);
memset(nonce, 0x66, 8);
memset(input, 0, TEST_BLOCK_SIZE);
// Test various extreme positions
struct {
uint32_t counter_low;
uint32_t counter_high;
const char* description;
} test_cases[] = {
{0x00000000, 0, "Start of first 256GB segment"},
{0xFFFFFFFF, 0, "End of first 256GB segment"},
{0x00000000, 1, "Start of second 256GB segment"},
{0xFFFFFFFF, 1, "End of second 256GB segment"},
{0x00000000, 0xFFFF, "Start of segment 65535"},
{0xFFFFFFFF, 0xFFFF, "End of segment 65535"},
};
for (size_t i = 0; i < sizeof(test_cases) / sizeof(test_cases[0]); i++) {
printf(" Testing: %s (0x%08X, 0x%08X)...\n",
test_cases[i].description,
test_cases[i].counter_low,
test_cases[i].counter_high);
if (chacha20_encrypt_extended(key, test_cases[i].counter_low,
test_cases[i].counter_high, nonce,
input, output, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED at %s\n", test_cases[i].description);
return 1;
}
}
printf(" ✓ All extreme values handled correctly\n");
printf(" ✓ PASSED\n\n");
return 0;
}
int main() {
printf("=================================================================\n");
printf("ChaCha20 Extended Counter Test Suite\n");
printf("=================================================================\n\n");
int failures = 0;
failures += test_counter_overflow();
failures += test_large_file_simulation();
failures += test_compatibility();
failures += test_extreme_values();
printf("=================================================================\n");
if (failures == 0) {
printf("✓ ALL TESTS PASSED\n");
printf("=================================================================\n");
printf("\nThe extended counter implementation is working correctly.\n");
printf("It can now handle pads larger than 256GB without overflow errors.\n");
return 0;
} else {
printf("❌ %d TEST(S) FAILED\n", failures);
printf("=================================================================\n");
return 1;
}
}

129
tests/test_padding.sh Executable file
View File

@@ -0,0 +1,129 @@
#!/bin/bash
# Test script for message padding implementation
set -e
echo "=== Testing Message Padding Implementation ==="
echo ""
# Colors
GREEN='\033[0;32m'
RED='\033[0;31m'
NC='\033[0m' # No Color
# Test counter
TESTS_PASSED=0
TESTS_FAILED=0
# Function to run a test
run_test() {
local test_name="$1"
local test_command="$2"
echo -n "Testing: $test_name... "
if eval "$test_command" > /dev/null 2>&1; then
echo -e "${GREEN}PASS${NC}"
((TESTS_PASSED++))
return 0
else
echo -e "${RED}FAIL${NC}"
((TESTS_FAILED++))
return 1
fi
}
# Create a small test pad if it doesn't exist
if [ ! -f "pads/"*.pad ]; then
echo "Creating test pad (1MB)..."
./build/otp-x86_64 generate 1MB
echo ""
fi
# Get the first pad checksum
PAD_CHKSUM=$(ls pads/*.pad | head -n 1 | xargs basename | sed 's/.pad$//')
echo "Using pad: ${PAD_CHKSUM:0:16}..."
echo ""
# Test 1: Encrypt and decrypt a short message (should be padded to 256 bytes)
echo "Test 1: Short message (10 bytes -> 256 bytes padded)"
TEST_MSG="Hello Test"
ENCRYPTED=$(echo "$TEST_MSG" | ./build/otp-x86_64 encrypt ${PAD_CHKSUM:0:8})
DECRYPTED=$(echo "$ENCRYPTED" | ./build/otp-x86_64 decrypt)
if [ "$DECRYPTED" = "$TEST_MSG" ]; then
echo -e "${GREEN}✓ Short message encryption/decryption successful${NC}"
((TESTS_PASSED++))
else
echo -e "${RED}✗ Short message failed${NC}"
echo " Expected: $TEST_MSG"
echo " Got: $DECRYPTED"
((TESTS_FAILED++))
fi
echo ""
# Test 2: Encrypt and decrypt a medium message (should be padded to 512 bytes)
echo "Test 2: Medium message (~300 bytes -> 512 bytes padded)"
TEST_MSG=$(printf 'A%.0s' {1..300})
ENCRYPTED=$(echo "$TEST_MSG" | ./build/otp-x86_64 encrypt ${PAD_CHKSUM:0:8})
DECRYPTED=$(echo "$ENCRYPTED" | ./build/otp-x86_64 decrypt)
if [ "$DECRYPTED" = "$TEST_MSG" ]; then
echo -e "${GREEN}✓ Medium message encryption/decryption successful${NC}"
((TESTS_PASSED++))
else
echo -e "${RED}✗ Medium message failed${NC}"
((TESTS_FAILED++))
fi
echo ""
# Test 3: Encrypt and decrypt with special characters
echo "Test 3: Special characters and unicode"
TEST_MSG="Hello! @#$%^&*() 测试"
ENCRYPTED=$(echo "$TEST_MSG" | ./build/otp-x86_64 encrypt ${PAD_CHKSUM:0:8})
DECRYPTED=$(echo "$ENCRYPTED" | ./build/otp-x86_64 decrypt)
if [ "$DECRYPTED" = "$TEST_MSG" ]; then
echo -e "${GREEN}✓ Special characters encryption/decryption successful${NC}"
((TESTS_PASSED++))
else
echo -e "${RED}✗ Special characters failed${NC}"
echo " Expected: $TEST_MSG"
echo " Got: $DECRYPTED"
((TESTS_FAILED++))
fi
echo ""
# Test 4: File encryption/decryption with padding
echo "Test 4: File encryption/decryption"
TEST_FILE="/tmp/otp_test_file.txt"
echo "This is a test file for OTP encryption with padding." > "$TEST_FILE"
./build/otp-x86_64 -f "$TEST_FILE" ${PAD_CHKSUM:0:8} -a -o /tmp/test_encrypted.otp.asc
./build/otp-x86_64 decrypt /tmp/test_encrypted.otp.asc -o /tmp/test_decrypted.txt
if diff "$TEST_FILE" /tmp/test_decrypted.txt > /dev/null 2>&1; then
echo -e "${GREEN}✓ File encryption/decryption successful${NC}"
((TESTS_PASSED++))
else
echo -e "${RED}✗ File encryption/decryption failed${NC}"
((TESTS_FAILED++))
fi
# Cleanup
rm -f "$TEST_FILE" /tmp/test_encrypted.otp.asc /tmp/test_decrypted.txt
echo ""
# Summary
echo "=== Test Summary ==="
echo -e "Tests passed: ${GREEN}${TESTS_PASSED}${NC}"
echo -e "Tests failed: ${RED}${TESTS_FAILED}${NC}"
echo ""
if [ $TESTS_FAILED -eq 0 ]; then
echo -e "${GREEN}All tests passed!${NC}"
exit 0
else
echo -e "${RED}Some tests failed.${NC}"
exit 1
fi

55
tests/test_truerng.c Normal file
View File

@@ -0,0 +1,55 @@
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <time.h>
#include "include/otp.h"
int main(int argc, char* argv[]) {
(void)argc; (void)argv; // Suppress unused parameter warnings
hardware_rng_device_t device;
snprintf(device.port_path, sizeof(device.port_path), "/dev/ttyUSB0");
device.device_type = TRUERNG_ORIGINAL;
snprintf(device.friendly_name, sizeof(device.friendly_name), "TrueRNG");
device.is_working = 1;
printf("Debug: Device type set to: %d (TRUERNG_ORIGINAL should be %d)\n", device.device_type, TRUERNG_ORIGINAL);
printf("Debug: Comparison result: device.device_type == SWIFTRNG is %s\n",
(device.device_type == SWIFTRNG) ? "TRUE" : "FALSE");
// Test with small buffer (1KB) and short timeout
const size_t test_bytes = 1024;
unsigned char* test_buffer = malloc(test_bytes);
if (!test_buffer) {
printf("ERROR: Cannot allocate test buffer\n");
return 1;
}
size_t collected = 0;
time_t start_time = time(NULL);
printf("Testing TrueRNG device at %s...\n", device.port_path);
// Test device connectivity with timeout
int result = collect_truerng_entropy_from_device(&device, test_buffer, test_bytes, &collected, 1);
time_t end_time = time(NULL);
double test_duration = difftime(end_time, start_time);
if (result == 0 && collected > 0) {
double speed_kbps = (collected / 1024.0) / (test_duration > 0 ? test_duration : 1.0);
printf("SUCCESS: Collected %zu bytes in %.2f seconds (%.2f KB/s)\n", collected, test_duration, speed_kbps);
// Show first few bytes as hex
printf("First 16 bytes: ");
for (int i = 0; i < 16 && i < (int)collected; i++) {
printf("%02x ", test_buffer[i]);
}
printf("\n");
} else {
printf("FAILED: Error code %d, collected %zu bytes in %.2f seconds\n", result, collected, test_duration);
}
free(test_buffer);
return result;
}