Compare commits

...

22 Commits

Author SHA1 Message Date
302b200548 Version v0.3.48 - -m Fix directory encryption output filename - strip trailing slash from directory path 2025-12-27 12:18:08 -05:00
18a4441746 Version v0.3.47 - -m Fix directory decryption - skip pause for temp files to allow extraction to continue 2025-12-27 12:13:57 -05:00
974470238d Version v0.3.46 - -m Fix directory decryption default filename - remove .tar.gz.otp extension 2025-12-27 12:10:14 -05:00
7c2821dd0d Version v0.3.45 - -m Fix directory encryption output path - save in same directory as source 2025-12-27 12:03:27 -05:00
6f3976bc07 Version v0.3.44 - -m Disable pad integrity check during decryption for performance - trust filename checksum 2025-12-27 11:59:37 -05:00
3bef639cc3 Version v0.3.43 - -m Remove unnecessary calculate_checksum() calls during encryption - use filename checksum directly 2025-12-27 11:56:28 -05:00
81eded2995 Version v0.3.42 - -m Suppress miniz warnings in archive.c header include 2025-12-27 11:51:10 -05:00
e126e30889 Version v0.3.41 - -m Suppress miniz library warnings, auto-select pad when only one available 2025-12-27 11:49:29 -05:00
6fe12e0c1c Version v0.3.40 - -m Add directory encryption (TAR+GZIP+OTP), integrate ranger for directory selection, add microtar/miniz libraries, remove binary state file backward compatibility - enforce text format only 2025-12-27 11:45:31 -05:00
89aa3baff6 Version v0.3.39 - . 2025-12-25 08:25:18 -05:00
39e818dd51 Version v0.3.38 - Implement ChaCha20 nonce extension to support pads larger than 256GB 2025-12-24 10:00:32 -05:00
977da58a3b Version v0.3.37 - Implement ChaCha20 nonce extension to support pads larger than 256GB 2025-12-24 10:00:27 -05:00
2c311a9a61 Version v0.3.36 - "." 2025-12-21 09:18:39 -04:00
b969590625 Version v0.3.35 - Convert to decimal units (1000-based) to match system tools, add posix_fallocate for guaranteed space allocation, use f_bavail for accurate space reporting, add drive info to Pad Management header 2025-12-20 10:02:15 -04:00
cf52274c2c Version v0.3.34 - Fixed usb space reporting 2025-12-20 09:25:38 -04:00
f3599fef37 Version v0.3.33 - Update readme.md some more 2025-12-18 10:20:36 -04:00
c229aec88e Version v0.3.32 - Update readme.md some more 2025-12-18 10:12:41 -04:00
862465c5c2 Version v0.3.31 - Update readme.md 2025-12-18 09:53:22 -04:00
799e34e045 Version v0.3.30 - Update readme.md 2025-12-18 09:46:32 -04:00
1d6f4a225d Version v0.3.29 - Update versioning system 2025-12-18 09:33:18 -04:00
4bd0c5aa42 Version v0.3.28 - Cleaned up file structure, removing otp.c and otp.h files 2025-12-18 09:28:38 -04:00
dffae799aa Version v0.3.27 - Clean up .o files 2025-12-18 09:21:12 -04:00
19 changed files with 1516 additions and 297 deletions

7
.gitignore vendored
View File

@@ -24,3 +24,10 @@ test_truerng
# Temporary files # Temporary files
*.pad *.pad
*.state *.state
# Downloaded dependencies (source)
miniz/
microtar/
# Test directories
test_dir/

View File

@@ -1,23 +1,40 @@
CC = gcc CC = gcc
CFLAGS = -Wall -Wextra -std=c99 -Isrc CFLAGS = -Wall -Wextra -std=c99 -Isrc -Isrc/miniz -Isrc/microtar
CFLAGS_MINIZ = -Wall -Wextra -std=c99 -D_POSIX_C_SOURCE=200112L -Isrc -Isrc/miniz -Isrc/microtar -Wno-unused-function -Wno-implicit-function-declaration
LIBS = -lm LIBS = -lm
LIBS_STATIC = -static -lm LIBS_STATIC = -static -lm
ARCH = $(shell uname -m) ARCH = $(shell uname -m)
TARGET = build/otp-$(ARCH) TARGET = build/otp-$(ARCH)
SOURCES = $(wildcard src/*.c) SOURCES = $(wildcard src/*.c)
MINIZ_SOURCES = $(wildcard src/miniz/*.c)
MICROTAR_SOURCES = $(wildcard src/microtar/*.c)
OBJS = $(SOURCES:.c=.o) OBJS = $(SOURCES:.c=.o)
MINIZ_OBJS = $(MINIZ_SOURCES:.c=.o)
MICROTAR_OBJS = $(MICROTAR_SOURCES:.c=.o)
ALL_OBJS = $(OBJS) $(MINIZ_OBJS) $(MICROTAR_OBJS)
# Default build target # Default build target
$(TARGET): $(OBJS) $(TARGET): $(ALL_OBJS)
@mkdir -p build @mkdir -p build
$(CC) $(CFLAGS) -o $(TARGET) $(OBJS) $(LIBS) $(CC) $(CFLAGS) -o $(TARGET) $(ALL_OBJS) $(LIBS)
@rm -f $(ALL_OBJS)
# Static linking target # Static linking target
static: $(OBJS) static: $(ALL_OBJS)
@mkdir -p build @mkdir -p build
$(CC) $(CFLAGS) -o $(TARGET) $(OBJS) $(LIBS_STATIC) $(CC) $(CFLAGS) -o $(TARGET) $(ALL_OBJS) $(LIBS_STATIC)
@rm -f $(ALL_OBJS)
%.o: %.c # Compile main source files with full warnings
src/%.o: src/%.c
$(CC) $(CFLAGS) -c $< -o $@
# Compile miniz library files with reduced warnings
src/miniz/%.o: src/miniz/%.c
$(CC) $(CFLAGS_MINIZ) -c $< -o $@
# Compile microtar library files normally
src/microtar/%.o: src/microtar/%.c
$(CC) $(CFLAGS) -c $< -o $@ $(CC) $(CFLAGS) -c $< -o $@
clean: clean:

229
README.md
View File

@@ -1,9 +1,8 @@
# OTP Cipher - One Time Pad Implementation # OTP Cipher - One Time Pad Implementation
## Introduction ## Introduction
A secure one-time pad (OTP) cipher implementation in C. A secure one-time pad (OTP) cipher implementation in C99.
## Why One-Time Pads ## Why One-Time Pads
@@ -41,8 +40,6 @@ To address this problem, we can use Nostr to share among devices the place in th
One-time pads can be trivially encrypted and decrypted using pencil and paper, making them accessible even without electronic devices. One-time pads can be trivially encrypted and decrypted using pencil and paper, making them accessible even without electronic devices.
## Features ## Features
- **Perfect Security**: Implements true one-time pad encryption with information-theoretic security - **Perfect Security**: Implements true one-time pad encryption with information-theoretic security
@@ -57,106 +54,134 @@ One-time pads can be trivially encrypted and decrypted using pencil and paper, m
- **Cross-Platform**: Works on Linux and other UNIX-like systems - **Cross-Platform**: Works on Linux and other UNIX-like systems
## Building ## Quick Start
### Download Pre-Built Binaries
**[Download Current Linux x86](https://git.laantungir.net/laantungir/otp/releases/download/v0.3.47/otp-v0.3.47-linux-x86_64)**
**[Download Current Raspberry Pi 64](https://git.laantungir.net/laantungir/otp/releases/download/v0.3.47/otp-v0.3.47-linux-arm64)**
After downloading:
```bash
# Rename for convenience, then make executable
mv otp-v0.3.47-linux-x86_64 otp
chmod +x otp
# Run it
./otp
```
### First Steps
1. **Generate your first pad:**
```bash
./otp generate 1GB
```
2. **Encrypt a message:**
```bash
./otp encrypt
# Follow the interactive prompts
```
3. **Decrypt a message:**
```bash
./otp decrypt
# Paste the encrypted message
```
## Building from Source
### Prerequisites ### Prerequisites
- GCC compiler - GCC compiler
- Git (for version tracking)
- Make - Make
### Build Commands ### Build Commands
Use the included build script for automatic versioning:
```bash ```bash
# Standard build (default) make # Build for current architecture
./build.sh build make static # Static linking (standalone binary)
make clean # Clean build artifacts
# Static linking build make install # Install to /usr/local/bin/otp
./build.sh static make uninstall # Remove from system
# Clean build artifacts
./build.sh clean
# Generate version files only
./build.sh version
# Install to system
./build.sh install
# Remove from system
./build.sh uninstall
# Show usage
./build.sh help
``` ```
### Traditional Make Output: `build/otp-$(ARCH)` (e.g., `build/otp-x86_64`)
You can also use make directly (without automatic versioning):
After building, run with:
```bash ```bash
make # Standard build ./build/otp-x86_64
make static # Static linking
make clean # Clean artifacts
make install # Install to /usr/local/bin/
make uninstall # Remove from system
``` ```
## Usage ## Usage
The OTP Cipher operates in two modes:
**Interactive Mode**: Run without arguments to access a menu-driven interface. Best for exploring features, managing pads, and performing operations step-by-step with prompts and guidance.
**Command Line Mode**: Provide arguments to execute specific operations directly. Ideal for scripting, automation, and quick one-off tasks.
### Interactive Mode ### Interactive Mode
Launch the menu-driven interface:
```bash ```bash
./otp ./otp
``` ```
Navigate through menus to generate pads, encrypt/decrypt messages, manage pads, and configure settings.
### Command Line Mode ### Command Line Mode
Execute operations directly with arguments:
```bash ```bash
# Generate a new pad # Generate a new pad
./otp generate 1GB ./otp generate 1GB
# Encrypt text (interactive input) # Encrypt text (will prompt for input)
./otp encrypt <pad_hash_or_prefix> ./otp encrypt <pad_hash_or_prefix>
# Decrypt message (interactive input) # Decrypt message (will prompt for input)
./otp decrypt <pad_hash_or_prefix> ./otp decrypt <pad_hash_or_prefix>
# List available pads # List available pads
./otp list ./otp list
``` ```
## Version System Details ## Version System
### Centralized Version Management
Version is defined in a single location: `src/main.h`
```c
#define OTP_VERSION "v0.3.24"
```
All code references this constant, ensuring consistency across:
- Main menu display
- ASCII armor output
- Help/usage text
### Automatic Version Increment ### Automatic Version Increment
Every build automatically increments the patch version: The `build.sh` script automatically:
- v0.1.0 → v0.1.1 → v0.1.2, etc. 1. Increments patch version (v0.3.24 → v0.3.25)
- Creates git tags for each version 2. Updates `OTP_VERSION` in `src/main.h`
- Embeds detailed build information 3. Creates git commit and tag
4. Pushes to remote repository
### Manual Version Control ### Manual Version Control
For major/minor releases, create tags manually: For major/minor releases, create tags manually:
```bash ```bash
# Feature release (minor bump) # Feature release (minor bump)
git tag v0.2.0 # Next build: v0.2.1 git tag v0.4.0 # Next build: v0.4.1
# Breaking change (major bump) # Breaking change (major bump)
git tag v1.0.0 # Next build: v1.0.1 git tag v1.0.0 # Next build: v1.0.1
``` ```
### Version Information Available
- Version number (major.minor.patch)
- Git commit hash and branch
- Build date and time
- Full version display with metadata
### Generated Files
The build system automatically manages Git versioning by incrementing tags.
These files are excluded from git (.gitignore) and regenerated on each build.
## Security Features ## Security Features
- Uses `/dev/urandom` for cryptographically secure random number generation - Uses `/dev/urandom` for cryptographically secure random number generation
@@ -166,28 +191,32 @@ These files are excluded from git (.gitignore) and regenerated on each build.
- State tracking to prevent pad reuse - State tracking to prevent pad reuse
- **Zero external crypto dependencies** - completely self-contained implementation - **Zero external crypto dependencies** - completely self-contained implementation
## File Structure ## Project Structure
``` ```
otp/ otp/
├── build.sh # Build script with automatic versioning ├── build.sh # Build script with automatic versioning
├── Makefile # Traditional make build system ├── Makefile # Traditional make build system
├── otp.c # Legacy compatibility and global definitions ├── README.md # This file
├── README.md # This file ├── .gitignore # Git ignore rules
├── .gitignore # Git ignore rules
├── include/
│ └── otp.h # Public API header with all function prototypes
├── src/ ├── src/
│ ├── main.c # Main application entry point and command line handling │ ├── main.h # Main header with all prototypes and OTP_VERSION
│ ├── ui.c # Interactive user interface and menu system │ ├── main.c # Application entry point and command line handling
│ ├── state.c # Global state management (pads directory, terminal dimensions) │ ├── ui.c # Interactive user interface and menu system
│ ├── crypto.c # Core cryptographic operations (XOR, ChaCha20) │ ├── state.c # Global state management (pads directory, preferences)
│ ├── pads.c # Pad management and file operations │ ├── crypto.c # Core cryptographic operations (XOR, base64)
│ ├── entropy.c # Entropy collection from various sources │ ├── pads.c # Pad management and file operations
│ ├── trng.c # Hardware RNG device detection and entropy collection │ ├── entropy.c # Entropy collection from various sources
── util.c # Utility functions and helpers ── trng.c # Hardware RNG device detection and collection
├── pads/ # OTP pad storage directory (created at runtime) │ ├── util.c # Utility functions and helpers
└── VERSION # Plain text version (generated) │ ├── nostr_chacha20.c # ChaCha20 implementation for entropy expansion
│ └── nostr_chacha20.h # ChaCha20 header
├── build/
│ ├── otp-x86_64 # Native x86_64 binary (created by build)
│ └── otp-arm64 # ARM64 binary (created by cross-compilation)
├── pads/ # OTP pad storage directory (created at runtime)
├── files/ # Encrypted file storage (created at runtime)
└── tests/ # Test scripts and utilities
``` ```
## Architecture ## Architecture
@@ -197,13 +226,14 @@ The OTP cipher uses a modular architecture with clean separation of concerns:
- **main.c**: Application entry point, command line parsing, and mode selection - **main.c**: Application entry point, command line parsing, and mode selection
- **ui.c**: Interactive user interface, menus, and terminal management - **ui.c**: Interactive user interface, menus, and terminal management
- **state.c**: Global state management (pads directory, terminal dimensions, preferences) - **state.c**: Global state management (pads directory, terminal dimensions, preferences)
- **crypto.c**: Core cryptographic operations (XOR encryption, ChaCha20 entropy mixing) - **crypto.c**: Core cryptographic operations (XOR encryption, base64 encoding)
- **pads.c**: Pad file management, checksums, and state tracking - **pads.c**: Pad file management, checksums, and state tracking
- **entropy.c**: Entropy collection from keyboard, dice, and other sources - **entropy.c**: Entropy collection from keyboard, dice, files, and hardware RNG
- **trng.c**: Hardware RNG device detection and entropy collection from USB devices - **trng.c**: Hardware RNG device detection and entropy collection from USB devices
- **util.c**: Utility functions, file operations, and helper routines - **util.c**: Utility functions, file operations, and helper routines
- **nostr_chacha20.c**: ChaCha20 stream cipher for entropy expansion
All modules share a common header (`include/otp.h`) that defines the public API and data structures. All modules share a common header (`src/main.h`) that defines the public API, data structures, and version constant.
## Hardware RNG Device Support ## Hardware RNG Device Support
@@ -401,13 +431,48 @@ No. ChkSum (first 16 chars) Size Used % Used
# Select "S" for show pad info, enter checksum or prefix # Select "S" for show pad info, enter checksum or prefix
``` ```
## Important Notes
### Size Units: Decimal (SI) vs Binary (IEC)
**This program uses decimal (SI) units for all size specifications**, matching the behavior of most system tools like `ls -lh`, `df -h`, and file managers:
- **1 KB** = 1,000 bytes (not 1,024)
- **1 MB** = 1,000,000 bytes (not 1,048,576)
- **1 GB** = 1,000,000,000 bytes (not 1,073,741,824)
- **1 TB** = 1,000,000,000,000 bytes (not 1,099,511,627,776)
**Why decimal units?**
- Consistency with system tools (`ls`, `df`, file managers)
- Matches storage device marketing (a "1TB" USB drive has ~1,000,000,000,000 bytes)
- Avoids confusion when comparing sizes across different tools
- Industry standard for storage devices and file systems
**Example:** When you request a 100GB pad, the program creates exactly 100,000,000,000 bytes, which will display as "100GB" in `ls -lh` and your file manager.
**Note:** Some technical tools may use binary units (GiB, MiB) where 1 GiB = 1,024³ bytes. This program intentionally uses decimal units for user-friendliness and consistency with common tools.
## License ## License
This project includes automatic versioning system based on the Generic Automatic Version Increment System. This project includes automatic versioning system based on the Generic Automatic Version Increment System.
## State Files
Pad state files (`.state`) use a human-readable text format:
```
offset=1234567890
```
This tracks how many bytes of each pad have been used. The format is:
- **Human-readable**: Can inspect with `cat checksum.state`
- **Backward compatible**: Automatically reads old binary format
- **Easy to debug**: Can manually edit if needed
## Contributing ## Contributing
When contributing: When contributing:
1. The version will automatically increment on builds 1. The version will automatically increment on builds via `build.sh`
2. For major features, consider manually creating minor version tags 2. Version is centralized in `src/main.h` as `OTP_VERSION`
3. Generated version files (`src/version.*`, `VERSION`) should not be committed 3. For major features, manually create minor/major version tags
4. Build artifacts in `build/` and object files are auto-cleaned

View File

@@ -146,20 +146,53 @@ increment_version() {
update_source_version() { update_source_version() {
local NEW_VERSION="$1" local NEW_VERSION="$1"
print_status "Updating version strings in source code..." print_status "Updating version constant in source code..."
# Replace hardcoded version strings in src/otp.c with the current git tag # Update OTP_VERSION constant in src/main.h
if [ -f "src/otp.c" ]; then if [ -f "src/main.h" ]; then
# Update main menu version sed -i "s/#define OTP_VERSION \"v[0-9]\+\.[0-9]\+\.[0-9]\+\"/#define OTP_VERSION \"$NEW_VERSION\"/g" src/main.h
sed -i "s/OTP v[0-9]\+\.[0-9]\+\.[0-9]\+/OTP $NEW_VERSION/g" src/otp.c print_success "Updated OTP_VERSION in src/main.h to $NEW_VERSION"
# Update ASCII output version
sed -i "s/Version: v[0-9]\+\.[0-9]\+\.[0-9]\+/Version: $NEW_VERSION/g" src/otp.c
# Update usage/help text version
sed -i "s/Implementation v[0-9]\+\.[0-9]\+\.[0-9]\+/Implementation $NEW_VERSION/g" src/otp.c
print_success "Updated version strings in src/otp.c to $NEW_VERSION"
else else
print_warning "src/otp.c not found - skipping version string updates" print_warning "src/main.h not found - skipping version update"
fi
# Update README.md with direct download links
if [ -f "README.md" ]; then
print_status "Updating README.md with download links for $NEW_VERSION..."
# Create the new download section with direct download links
local NEW_DOWNLOAD_SECTION="### Download Pre-Built Binaries
**[Download Current Linux x86](https://git.laantungir.net/laantungir/otp/releases/download/${NEW_VERSION}/otp-${NEW_VERSION}-linux-x86_64)**
**[Download Current Raspberry Pi 64](https://git.laantungir.net/laantungir/otp/releases/download/${NEW_VERSION}/otp-${NEW_VERSION}-linux-arm64)**
After downloading:
\`\`\`bash
# Rename for convenience, then make executable
mv otp-${NEW_VERSION}-linux-x86_64 otp
chmod +x otp
# Run it
./otp
\`\`\`"
# Use awk to replace the section between "### Download Pre-Built Binaries" and "### First Steps"
awk -v new_section="$NEW_DOWNLOAD_SECTION" '
/^### Download Pre-Built Binaries/ {
print new_section
skip=1
next
}
/^### First Steps/ {
skip=0
}
!skip
' README.md > README.md.tmp && mv README.md.tmp README.md
print_success "Updated README.md with download links for $NEW_VERSION"
else
print_warning "README.md not found - skipping README update"
fi fi
} }
@@ -289,6 +322,10 @@ build_project() {
fi fi
fi fi
# Clean up object files after successful build
print_status "Cleaning up object files..."
rm -f src/*.o
# Create Gitea release with binaries # Create Gitea release with binaries
if [ -f "$HOME/.gitea_token" ]; then if [ -f "$HOME/.gitea_token" ]; then
create_gitea_release "$NEW_VERSION" create_gitea_release "$NEW_VERSION"

493
src/archive.c Normal file
View File

@@ -0,0 +1,493 @@
#define _POSIX_C_SOURCE 200809L
#define _DEFAULT_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <unistd.h>
#include <sys/stat.h>
#include <dirent.h>
#include <time.h>
#include "main.h"
#include "microtar/microtar.h"
// Suppress warnings from miniz header
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-function"
#include "miniz/miniz.h"
#pragma GCC diagnostic pop
////////////////////////////////////////////////////////////////////////////////
// DIRECTORY ARCHIVING FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Helper function to recursively add directory contents to TAR archive
static int add_directory_to_tar(mtar_t* tar, const char* base_path, const char* relative_path) {
DIR* dir = opendir(base_path);
if (!dir) {
printf("Error: Cannot open directory '%s'\n", base_path);
return 1;
}
struct dirent* entry;
while ((entry = readdir(dir)) != NULL) {
// Skip . and ..
if (strcmp(entry->d_name, ".") == 0 || strcmp(entry->d_name, "..") == 0) {
continue;
}
// Build full path
char full_path[2048];
snprintf(full_path, sizeof(full_path), "%s/%s", base_path, entry->d_name);
// Build relative path for TAR
char tar_path[2048];
if (strlen(relative_path) > 0) {
snprintf(tar_path, sizeof(tar_path), "%s/%s", relative_path, entry->d_name);
} else {
snprintf(tar_path, sizeof(tar_path), "%s", entry->d_name);
}
struct stat st;
if (stat(full_path, &st) != 0) {
printf("Warning: Cannot stat '%s', skipping\n", full_path);
continue;
}
if (S_ISDIR(st.st_mode)) {
// Recursively add subdirectory
if (add_directory_to_tar(tar, full_path, tar_path) != 0) {
closedir(dir);
return 1;
}
} else if (S_ISREG(st.st_mode)) {
// Add regular file
FILE* fp = fopen(full_path, "rb");
if (!fp) {
printf("Warning: Cannot open '%s', skipping\n", full_path);
continue;
}
// Get file size
fseek(fp, 0, SEEK_END);
size_t file_size = ftell(fp);
fseek(fp, 0, SEEK_SET);
// Read file data
unsigned char* file_data = malloc(file_size);
if (!file_data) {
printf("Error: Memory allocation failed for '%s'\n", full_path);
fclose(fp);
closedir(dir);
return 1;
}
size_t bytes_read = fread(file_data, 1, file_size, fp);
fclose(fp);
if (bytes_read != file_size) {
printf("Warning: Could not read entire file '%s', skipping\n", full_path);
free(file_data);
continue;
}
// Write to TAR
if (mtar_write_file_header(tar, tar_path, file_size) != MTAR_ESUCCESS) {
printf("Error: Failed to write TAR header for '%s'\n", tar_path);
free(file_data);
closedir(dir);
return 1;
}
if (mtar_write_data(tar, file_data, file_size) != MTAR_ESUCCESS) {
printf("Error: Failed to write TAR data for '%s'\n", tar_path);
free(file_data);
closedir(dir);
return 1;
}
free(file_data);
}
}
closedir(dir);
return 0;
}
// Create TAR archive from directory
int create_tar_archive(const char* dir_path, const char* tar_output_path) {
mtar_t tar;
if (mtar_open(&tar, tar_output_path, "w") != MTAR_ESUCCESS) {
printf("Error: Cannot create TAR file '%s'\n", tar_output_path);
return 1;
}
// Get directory name for relative paths
char dir_name[512];
const char* last_slash = strrchr(dir_path, '/');
if (last_slash) {
strncpy(dir_name, last_slash + 1, sizeof(dir_name) - 1);
} else {
strncpy(dir_name, dir_path, sizeof(dir_name) - 1);
}
dir_name[sizeof(dir_name) - 1] = '\0';
// Add directory contents to TAR
int result = add_directory_to_tar(&tar, dir_path, dir_name);
// Finalize and close TAR
mtar_finalize(&tar);
mtar_close(&tar);
return result;
}
// Extract TAR archive to directory
int extract_tar_archive(const char* tar_path, const char* output_dir) {
mtar_t tar;
mtar_header_t header;
if (mtar_open(&tar, tar_path, "r") != MTAR_ESUCCESS) {
printf("Error: Cannot open TAR file '%s'\n", tar_path);
return 1;
}
// Create output directory if it doesn't exist
mkdir(output_dir, 0755);
// Extract each file
while (mtar_read_header(&tar, &header) == MTAR_ESUCCESS) {
char output_path[2048];
snprintf(output_path, sizeof(output_path), "%s/%s", output_dir, header.name);
// Create parent directories
char* last_slash = strrchr(output_path, '/');
if (last_slash) {
char parent_dir[2048];
strncpy(parent_dir, output_path, last_slash - output_path);
parent_dir[last_slash - output_path] = '\0';
// Create directories recursively
char* p = parent_dir;
while (*p) {
if (*p == '/') {
*p = '\0';
mkdir(parent_dir, 0755);
*p = '/';
}
p++;
}
mkdir(parent_dir, 0755);
}
// Extract file data
unsigned char* data = malloc(header.size);
if (!data) {
printf("Error: Memory allocation failed\n");
mtar_close(&tar);
return 1;
}
if (mtar_read_data(&tar, data, header.size) != MTAR_ESUCCESS) {
printf("Error: Failed to read data for '%s'\n", header.name);
free(data);
mtar_close(&tar);
return 1;
}
// Write to file
FILE* fp = fopen(output_path, "wb");
if (!fp) {
printf("Error: Cannot create file '%s'\n", output_path);
free(data);
mtar_close(&tar);
return 1;
}
fwrite(data, 1, header.size, fp);
fclose(fp);
free(data);
mtar_next(&tar);
}
mtar_close(&tar);
return 0;
}
////////////////////////////////////////////////////////////////////////////////
// COMPRESSION FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Compress file with gzip (miniz)
int compress_file_gzip(const char* input_path, const char* output_path) {
// Read input file
FILE* in = fopen(input_path, "rb");
if (!in) {
printf("Error: Cannot open input file '%s'\n", input_path);
return 1;
}
fseek(in, 0, SEEK_END);
size_t input_size = ftell(in);
fseek(in, 0, SEEK_SET);
unsigned char* input_data = malloc(input_size);
if (!input_data) {
printf("Error: Memory allocation failed\n");
fclose(in);
return 1;
}
size_t bytes_read = fread(input_data, 1, input_size, in);
fclose(in);
if (bytes_read != input_size) {
printf("Error: Failed to read input file\n");
free(input_data);
return 1;
}
// Compress with miniz
mz_ulong compressed_size = compressBound(input_size);
unsigned char* compressed_data = malloc(compressed_size);
if (!compressed_data) {
printf("Error: Memory allocation failed\n");
free(input_data);
return 1;
}
int result = compress2(compressed_data, &compressed_size,
input_data, input_size,
MZ_BEST_COMPRESSION);
free(input_data);
if (result != MZ_OK) {
printf("Error: Compression failed (error code: %d)\n", result);
free(compressed_data);
return 1;
}
// Write compressed data
FILE* out = fopen(output_path, "wb");
if (!out) {
printf("Error: Cannot create output file '%s'\n", output_path);
free(compressed_data);
return 1;
}
fwrite(compressed_data, 1, compressed_size, out);
fclose(out);
free(compressed_data);
return 0;
}
// Decompress gzip file (miniz)
int decompress_file_gzip(const char* input_path, const char* output_path) {
// Read compressed file
FILE* in = fopen(input_path, "rb");
if (!in) {
printf("Error: Cannot open compressed file '%s'\n", input_path);
return 1;
}
fseek(in, 0, SEEK_END);
size_t compressed_size = ftell(in);
fseek(in, 0, SEEK_SET);
unsigned char* compressed_data = malloc(compressed_size);
if (!compressed_data) {
printf("Error: Memory allocation failed\n");
fclose(in);
return 1;
}
size_t bytes_read = fread(compressed_data, 1, compressed_size, in);
fclose(in);
if (bytes_read != compressed_size) {
printf("Error: Failed to read compressed file\n");
free(compressed_data);
return 1;
}
// Estimate decompressed size (try multiple times if needed)
mz_ulong output_size = compressed_size * 10;
unsigned char* output_data = NULL;
int result;
for (int attempt = 0; attempt < 3; attempt++) {
output_data = realloc(output_data, output_size);
if (!output_data) {
printf("Error: Memory allocation failed\n");
free(compressed_data);
return 1;
}
mz_ulong temp_size = output_size;
result = uncompress(output_data, &temp_size, compressed_data, compressed_size);
if (result == MZ_OK) {
output_size = temp_size;
break;
} else if (result == MZ_BUF_ERROR) {
// Buffer too small, try larger
output_size *= 2;
} else {
printf("Error: Decompression failed (error code: %d)\n", result);
free(compressed_data);
free(output_data);
return 1;
}
}
free(compressed_data);
if (result != MZ_OK) {
printf("Error: Decompression failed after multiple attempts\n");
free(output_data);
return 1;
}
// Write decompressed data
FILE* out = fopen(output_path, "wb");
if (!out) {
printf("Error: Cannot create output file '%s'\n", output_path);
free(output_data);
return 1;
}
fwrite(output_data, 1, output_size, out);
fclose(out);
free(output_data);
return 0;
}
////////////////////////////////////////////////////////////////////////////////
// HIGH-LEVEL DIRECTORY ENCRYPTION/DECRYPTION
////////////////////////////////////////////////////////////////////////////////
// Encrypt directory: TAR → GZIP → Encrypt
int encrypt_directory(const char* dir_path, const char* pad_identifier, const char* output_file) {
char temp_tar[512];
char temp_gz[512];
int result = 0;
// Generate temporary file paths
snprintf(temp_tar, sizeof(temp_tar), "/tmp/otp_tar_%d.tar", getpid());
snprintf(temp_gz, sizeof(temp_gz), "/tmp/otp_gz_%d.tar.gz", getpid());
printf("Creating TAR archive...\n");
if (create_tar_archive(dir_path, temp_tar) != 0) {
printf("Error: Failed to create TAR archive\n");
return 1;
}
printf("Compressing archive...\n");
if (compress_file_gzip(temp_tar, temp_gz) != 0) {
printf("Error: Failed to compress archive\n");
unlink(temp_tar);
return 1;
}
printf("Encrypting compressed archive...\n");
result = encrypt_file(pad_identifier, temp_gz, output_file, 0);
// Cleanup temporary files
unlink(temp_tar);
unlink(temp_gz);
if (result == 0) {
printf("Directory encrypted successfully: %s\n", output_file);
}
return result;
}
// Detect if file is a compressed TAR archive
int is_compressed_tar_archive(const char* file_path) {
FILE* fp = fopen(file_path, "rb");
if (!fp) {
return 0;
}
unsigned char magic[512];
size_t bytes_read = fread(magic, 1, sizeof(magic), fp);
fclose(fp);
if (bytes_read < 2) {
return 0;
}
// Check for GZIP magic bytes (0x1f 0x8b)
if (magic[0] == 0x1f && magic[1] == 0x8b) {
return 1;
}
// Check for TAR magic ("ustar" at offset 257)
if (bytes_read >= 262 && memcmp(magic + 257, "ustar", 5) == 0) {
return 1;
}
return 0;
}
// Decrypt and extract directory: Decrypt → GUNZIP → Extract TAR
int decrypt_and_extract_directory(const char* encrypted_file, const char* output_dir) {
char temp_decrypted[512];
char temp_tar[512];
int result = 0;
// Generate temporary file paths
snprintf(temp_decrypted, sizeof(temp_decrypted), "/tmp/otp_decrypt_%d", getpid());
snprintf(temp_tar, sizeof(temp_tar), "/tmp/otp_tar_%d.tar", getpid());
printf("Decrypting file...\n");
if (decrypt_file(encrypted_file, temp_decrypted) != 0) {
printf("Error: Failed to decrypt file\n");
return 1;
}
// Check if it's compressed
FILE* fp = fopen(temp_decrypted, "rb");
if (!fp) {
printf("Error: Cannot open decrypted file\n");
unlink(temp_decrypted);
return 1;
}
unsigned char magic[2];
fread(magic, 1, 2, fp);
fclose(fp);
if (magic[0] == 0x1f && magic[1] == 0x8b) {
// GZIP compressed
printf("Decompressing archive...\n");
if (decompress_file_gzip(temp_decrypted, temp_tar) != 0) {
printf("Error: Failed to decompress archive\n");
unlink(temp_decrypted);
return 1;
}
unlink(temp_decrypted);
} else {
// Not compressed, assume it's already TAR
rename(temp_decrypted, temp_tar);
}
printf("Extracting archive...\n");
result = extract_tar_archive(temp_tar, output_dir);
// Cleanup
unlink(temp_tar);
if (result == 0) {
printf("Directory extracted successfully to: %s\n", output_dir);
}
return result;
}

View File

@@ -5,7 +5,7 @@
#include <stdio.h> #include <stdio.h>
#include <time.h> #include <time.h>
#include <unistd.h> #include <unistd.h>
#include "otp.h" #include "main.h"
#define PROGRESS_UPDATE_INTERVAL (64 * 1024 * 1024) // 64MB intervals #define PROGRESS_UPDATE_INTERVAL (64 * 1024 * 1024) // 64MB intervals
@@ -198,7 +198,7 @@ int generate_ascii_armor(const char* chksum, uint64_t offset, const unsigned cha
strcpy(*ascii_output, "-----BEGIN OTP MESSAGE-----\n"); strcpy(*ascii_output, "-----BEGIN OTP MESSAGE-----\n");
char temp_line[256]; char temp_line[256];
snprintf(temp_line, sizeof(temp_line), "Version: v0.3.16\n"); snprintf(temp_line, sizeof(temp_line), "Version: %s\n", OTP_VERSION);
strcat(*ascii_output, temp_line); strcat(*ascii_output, temp_line);
snprintf(temp_line, sizeof(temp_line), "Pad-ChkSum: %s\n", chksum); snprintf(temp_line, sizeof(temp_line), "Pad-ChkSum: %s\n", chksum);
@@ -297,7 +297,6 @@ int encrypt_text(const char* pad_identifier, const char* input_text) {
} }
char text_buffer[MAX_INPUT_SIZE]; char text_buffer[MAX_INPUT_SIZE];
char chksum_hex[MAX_HASH_LENGTH];
uint64_t current_offset; uint64_t current_offset;
char pad_path[MAX_HASH_LENGTH + 20]; char pad_path[MAX_HASH_LENGTH + 20];
@@ -327,12 +326,8 @@ int encrypt_text(const char* pad_identifier, const char* input_text) {
} }
} }
// Calculate XOR checksum of pad file // Use pad_chksum directly - it's already the checksum from the filename
if (calculate_checksum(pad_path, chksum_hex) != 0) { // No need to recalculate by reading the entire pad file
printf("Error: Cannot calculate pad checksum\n");
free(pad_chksum);
return 1;
}
// Get input text - either from parameter or user input // Get input text - either from parameter or user input
if (input_text != NULL) { if (input_text != NULL) {
@@ -464,7 +459,7 @@ int encrypt_text(const char* pad_identifier, const char* input_text) {
// Use universal ASCII armor generator // Use universal ASCII armor generator
char* ascii_output; char* ascii_output;
if (generate_ascii_armor(chksum_hex, current_offset, ciphertext, input_len, &ascii_output) != 0) { if (generate_ascii_armor(pad_chksum, current_offset, ciphertext, input_len, &ascii_output) != 0) {
printf("Error: Failed to generate ASCII armor\n"); printf("Error: Failed to generate ASCII armor\n");
free(pad_data); free(pad_data);
free(ciphertext); free(ciphertext);
@@ -592,36 +587,14 @@ int universal_decrypt(const char* input_data, const char* output_target, decrypt
return 1; return 1;
} }
// Validate pad integrity // Pad integrity validation disabled for performance
int integrity_result = validate_pad_integrity(pad_path, stored_chksum); // The checksum is already verified by matching the filename
if (integrity_result == 3) { // If you need to verify pad integrity, the pad file would need to be read entirely
if (mode == DECRYPT_MODE_SILENT) { // which is very slow for large pads (multi-GB files)
fprintf(stderr, "Error: Pad integrity check failed!\n");
return 1; // Skip integrity check - trust the filename checksum
} else if (mode == DECRYPT_MODE_INTERACTIVE) { if (mode == DECRYPT_MODE_INTERACTIVE || mode == DECRYPT_MODE_FILE_TO_TEXT) {
printf("Warning: Pad integrity check failed!\n"); printf("Using pad: %s\n", stored_chksum);
printf("Expected: %s\n", stored_chksum);
printf("Continue anyway? (y/N): ");
fflush(stdout);
char response[10];
if (fgets(response, sizeof(response), stdin) == NULL ||
(response[0] != 'y' && response[0] != 'Y')) {
printf("Decryption aborted.\n");
return 1;
}
}
} else if (integrity_result != 0) {
if (mode == DECRYPT_MODE_SILENT) {
fprintf(stderr, "Error: Cannot verify pad integrity\n");
} else {
printf("Error: Cannot verify pad integrity\n");
}
return 1;
} else {
if (mode == DECRYPT_MODE_INTERACTIVE || mode == DECRYPT_MODE_FILE_TO_TEXT) {
printf("Pad integrity: VERIFIED\n");
}
} }
// Decode base64 ciphertext // Decode base64 ciphertext
@@ -746,7 +719,6 @@ int encrypt_file(const char* pad_identifier, const char* input_file, const char*
return 1; return 1;
} }
char chksum_hex[MAX_HASH_LENGTH];
uint64_t current_offset; uint64_t current_offset;
char pad_path[MAX_HASH_LENGTH + 20]; char pad_path[MAX_HASH_LENGTH + 20];
@@ -791,12 +763,8 @@ int encrypt_file(const char* pad_identifier, const char* input_file, const char*
} }
} }
// Calculate XOR checksum of pad file // Use pad_chksum directly - it's already the checksum from the filename
if (calculate_checksum(pad_path, chksum_hex) != 0) { // No need to recalculate by reading the entire pad file
printf("Error: Cannot calculate pad checksum\n");
free(pad_chksum);
return 1;
}
// Check if we have enough pad space // Check if we have enough pad space
struct stat pad_stat; struct stat pad_stat;
@@ -927,7 +895,7 @@ int encrypt_file(const char* pad_identifier, const char* input_file, const char*
// Use universal ASCII armor generator // Use universal ASCII armor generator
char* ascii_output; char* ascii_output;
if (generate_ascii_armor(chksum_hex, current_offset, encrypted_data, file_size, &ascii_output) != 0) { if (generate_ascii_armor(pad_chksum, current_offset, encrypted_data, file_size, &ascii_output) != 0) {
printf("Error: Failed to generate ASCII armor\n"); printf("Error: Failed to generate ASCII armor\n");
fclose(output_fp); fclose(output_fp);
free(encrypted_data); free(encrypted_data);
@@ -961,7 +929,7 @@ int encrypt_file(const char* pad_identifier, const char* input_file, const char*
// Pad checksum: 32 bytes (binary) // Pad checksum: 32 bytes (binary)
unsigned char pad_chksum_bin[32]; unsigned char pad_chksum_bin[32];
for (int i = 0; i < 32; i++) { for (int i = 0; i < 32; i++) {
sscanf(chksum_hex + i*2, "%2hhx", &pad_chksum_bin[i]); sscanf(pad_chksum + i*2, "%2hhx", &pad_chksum_bin[i]);
} }
fwrite(pad_chksum_bin, 1, 32, output_fp); fwrite(pad_chksum_bin, 1, 32, output_fp);
@@ -1165,8 +1133,11 @@ int decrypt_binary_file(FILE* input_fp, const char* output_file) {
printf("File decrypted successfully: %s\n", output_file); printf("File decrypted successfully: %s\n", output_file);
printf("Restored permissions and metadata\n"); printf("Restored permissions and metadata\n");
// Pause before returning to menu to let user see the success message // Only pause if output is not a temporary file (directory decryption uses /tmp/)
print_centered_header("File Decryption Complete", 1); if (strncmp(output_file, "/tmp/", 5) != 0) {
// Pause before returning to menu to let user see the success message
print_centered_header("File Decryption Complete", 1);
}
// Cleanup // Cleanup
free(encrypted_data); free(encrypted_data);

View File

@@ -16,7 +16,7 @@
#include <fcntl.h> #include <fcntl.h>
#include <math.h> #include <math.h>
#include "nostr_chacha20.h" #include "nostr_chacha20.h"
#include "otp.h" #include "main.h"
// In-place pad entropy addition using Chacha20 or direct XOR // In-place pad entropy addition using Chacha20 or direct XOR
@@ -82,7 +82,7 @@ int add_entropy_direct_xor(const char* pad_chksum, const unsigned char* entropy_
if (display_progress) { if (display_progress) {
printf("Adding entropy to pad using direct XOR...\n"); printf("Adding entropy to pad using direct XOR...\n");
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1024.0*1024.0*1024.0), pad_size); printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1000.0*1000.0*1000.0), pad_size);
printf("Entropy size: %zu bytes\n", entropy_size); printf("Entropy size: %zu bytes\n", entropy_size);
} }
@@ -212,15 +212,29 @@ int add_entropy_chacha20(const char* pad_chksum, const unsigned char* entropy_da
if (display_progress) { if (display_progress) {
printf("Adding entropy to pad using Chacha20...\n"); printf("Adding entropy to pad using Chacha20...\n");
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1024.0*1024.0*1024.0), pad_size); printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1000.0*1000.0*1000.0), pad_size);
} }
// Process pad in chunks // Process pad in chunks
unsigned char buffer[64 * 1024]; // 64KB chunks unsigned char buffer[64 * 1024]; // 64KB chunks
unsigned char keystream[64 * 1024]; unsigned char keystream[64 * 1024];
uint64_t offset = 0; uint64_t offset = 0;
uint32_t counter = 0; uint32_t counter_low = 0;
uint32_t counter_high = 0;
time_t start_time = time(NULL); time_t start_time = time(NULL);
// Use extended counter for pads larger than 256GB
// 256GB = 2^32 blocks * 64 bytes = 274,877,906,944 bytes
int use_extended = (pad_size > 274877906944ULL);
// For extended mode, use reduced 8-byte nonce
unsigned char nonce_reduced[8];
if (use_extended) {
memcpy(nonce_reduced, nonce + 4, 8);
if (display_progress) {
printf("Using extended counter mode for large pad (>256GB)\n");
}
}
while (offset < pad_size) { while (offset < pad_size) {
size_t chunk_size = sizeof(buffer); size_t chunk_size = sizeof(buffer);
@@ -237,7 +251,15 @@ int add_entropy_chacha20(const char* pad_chksum, const unsigned char* entropy_da
} }
// Generate keystream for this chunk // Generate keystream for this chunk
if (chacha20_encrypt(key, counter, nonce, buffer, keystream, chunk_size) != 0) { int chacha_result;
if (use_extended) {
chacha_result = chacha20_encrypt_extended(key, counter_low, counter_high,
nonce_reduced, buffer, keystream, chunk_size);
} else {
chacha_result = chacha20_encrypt(key, counter_low, nonce, buffer, keystream, chunk_size);
}
if (chacha_result != 0) {
printf("Error: Chacha20 keystream generation failed\n"); printf("Error: Chacha20 keystream generation failed\n");
fclose(pad_file); fclose(pad_file);
chmod(pad_path, S_IRUSR); chmod(pad_path, S_IRUSR);
@@ -265,7 +287,16 @@ int add_entropy_chacha20(const char* pad_chksum, const unsigned char* entropy_da
} }
offset += chunk_size; offset += chunk_size;
counter += (chunk_size + 63) / 64; // Round up for block count
// Update counters
uint32_t blocks = (chunk_size + 63) / 64; // Round up for block count
uint32_t old_counter_low = counter_low;
counter_low += blocks;
// Check for overflow and increment high counter
if (counter_low < old_counter_low) {
counter_high++;
}
// Show progress for large pads // Show progress for large pads
if (display_progress && offset % (64 * 1024 * 1024) == 0) { // Every 64MB if (display_progress && offset % (64 * 1024 * 1024) == 0) { // Every 64MB
@@ -282,7 +313,8 @@ int add_entropy_chacha20(const char* pad_chksum, const unsigned char* entropy_da
if (display_progress) { if (display_progress) {
show_progress(pad_size, pad_size, start_time); show_progress(pad_size, pad_size, start_time);
printf("\n✓ Entropy successfully added to pad using Chacha20\n"); printf("\n✓ Entropy successfully added to pad using Chacha20%s\n",
use_extended ? " (extended counter)" : "");
printf("✓ Pad integrity maintained\n"); printf("✓ Pad integrity maintained\n");
printf("✓ %zu bytes of entropy distributed across entire pad\n", entropy_size); printf("✓ %zu bytes of entropy distributed across entire pad\n", entropy_size);
printf("✓ Pad restored to read-only mode\n"); printf("✓ Pad restored to read-only mode\n");
@@ -593,8 +625,8 @@ int add_file_entropy_streaming(const char* pad_chksum, const char* file_path, si
if (display_progress) { if (display_progress) {
printf("Adding entropy to pad using streaming direct XOR...\n"); printf("Adding entropy to pad using streaming direct XOR...\n");
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1024.0*1024.0*1024.0), pad_size); printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1000.0*1000.0*1000.0), pad_size);
printf("Entropy file: %.2f GB (%zu bytes)\n", (double)file_size / (1024.0*1024.0*1024.0), file_size); printf("Entropy file: %.2f GB (%zu bytes)\n", (double)file_size / (1000.0*1000.0*1000.0), file_size);
} }
// Process in chunks // Process in chunks

View File

@@ -15,7 +15,7 @@
#include <termios.h> #include <termios.h>
#include <fcntl.h> #include <fcntl.h>
#include <math.h> #include <math.h>
#include "otp.h" #include "main.h"
int main(int argc, char* argv[]) { int main(int argc, char* argv[]) {
// Initialize terminal dimensions first // Initialize terminal dimensions first
@@ -241,7 +241,7 @@ int command_line_mode(int argc, char* argv[]) {
} }
void print_usage(const char* program_name) { void print_usage(const char* program_name) {
printf("OTP Cipher - One Time Pad Implementation v0.3.16\n"); printf("OTP Cipher - One Time Pad Implementation %s\n", OTP_VERSION);
printf("Built for testing entropy system\n"); printf("Built for testing entropy system\n");
printf("Usage:\n"); printf("Usage:\n");
printf(" %s - Interactive mode\n", program_name); printf(" %s - Interactive mode\n", program_name);

View File

@@ -1,12 +1,12 @@
#ifndef OTP_H #ifndef MAIN_H
#define OTP_H #define MAIN_H
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
// OTP CIPHER - FUNCTION PROTOTYPES HEADER // OTP CIPHER - MAIN HEADER FILE
// One Time Pad Implementation v0.2.109 // One Time Pad Implementation
// //
// This header file contains all function prototypes extracted from otp.c // This header file contains all function prototypes and type definitions
// Organized by functional categories for better maintainability // for the OTP Cipher project
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
#include <stdio.h> #include <stdio.h>
@@ -22,6 +22,9 @@
#include <string.h> #include <string.h>
#include <ctype.h> #include <ctype.h>
// Version - Updated automatically by build.sh
#define OTP_VERSION "v0.3.47"
// Constants // Constants
#define MAX_INPUT_SIZE 4096 #define MAX_INPUT_SIZE 4096
#define MAX_LINE_LENGTH 1024 #define MAX_LINE_LENGTH 1024
@@ -127,6 +130,7 @@ char* get_preferred_editor(void);
char* get_preferred_file_manager(void); char* get_preferred_file_manager(void);
int launch_text_editor(const char* initial_content, char* result_buffer, size_t buffer_size); int launch_text_editor(const char* initial_content, char* result_buffer, size_t buffer_size);
int launch_file_manager(const char* start_directory, char* selected_file, size_t buffer_size); int launch_file_manager(const char* start_directory, char* selected_file, size_t buffer_size);
int launch_directory_manager(const char* start_directory, char* selected_dir, size_t buffer_size);
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
// CORE CRYPTOGRAPHIC OPERATIONS // CORE CRYPTOGRAPHIC OPERATIONS
@@ -235,6 +239,23 @@ int update_pad_checksum_after_entropy(const char* old_chksum, char* new_chksum);
int rename_pad_files_safely(const char* old_chksum, const char* new_chksum); int rename_pad_files_safely(const char* old_chksum, const char* new_chksum);
int is_pad_unused(const char* pad_chksum); int is_pad_unused(const char* pad_chksum);
////////////////////////////////////////////////////////////////////////////////
// DIRECTORY ARCHIVING AND COMPRESSION FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Directory encryption/decryption (TAR + GZIP + OTP)
int encrypt_directory(const char* dir_path, const char* pad_identifier, const char* output_file);
int decrypt_and_extract_directory(const char* encrypted_file, const char* output_dir);
int is_compressed_tar_archive(const char* file_path);
// TAR archive operations
int create_tar_archive(const char* dir_path, const char* tar_output_path);
int extract_tar_archive(const char* tar_path, const char* output_dir);
// Compression operations
int compress_file_gzip(const char* input_path, const char* output_path);
int decompress_file_gzip(const char* input_path, const char* output_path);
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
// DIRECTORY MANAGEMENT FUNCTIONS // DIRECTORY MANAGEMENT FUNCTIONS
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
@@ -311,6 +332,7 @@ int handle_decrypt_menu(void);
int handle_pads_menu(void); int handle_pads_menu(void);
int handle_text_encrypt(void); int handle_text_encrypt(void);
int handle_file_encrypt(void); int handle_file_encrypt(void);
int handle_directory_encrypt(void);
int handle_verify_pad(const char* pad_chksum); int handle_verify_pad(const char* pad_chksum);
int handle_delete_pad(const char* pad_chksum); int handle_delete_pad(const char* pad_chksum);
@@ -335,4 +357,4 @@ char* select_pad_interactive(const char* title, const char* prompt, pad_filter_t
// Help and usage display // Help and usage display
void print_usage(const char* program_name); void print_usage(const char* program_name);
#endif // OTP_H #endif // MAIN_H

View File

@@ -129,8 +129,8 @@ int chacha20_block(const uint8_t key[32], uint32_t counter,
return 0; return 0;
} }
int chacha20_encrypt(const uint8_t key[32], uint32_t counter, int chacha20_encrypt(const uint8_t key[32], uint32_t counter,
const uint8_t nonce[12], const uint8_t* input, const uint8_t nonce[12], const uint8_t* input,
uint8_t* output, size_t length) { uint8_t* output, size_t length) {
uint8_t keystream[CHACHA20_BLOCK_SIZE]; uint8_t keystream[CHACHA20_BLOCK_SIZE];
size_t offset = 0; size_t offset = 0;
@@ -161,3 +161,45 @@ int chacha20_encrypt(const uint8_t key[32], uint32_t counter,
return 0; return 0;
} }
int chacha20_encrypt_extended(const uint8_t key[32], uint32_t counter_low,
uint32_t counter_high, const uint8_t nonce[8],
const uint8_t* input, uint8_t* output, size_t length) {
uint8_t keystream[CHACHA20_BLOCK_SIZE];
uint8_t extended_nonce[12];
size_t offset = 0;
while (length > 0) {
/* Build extended 12-byte nonce: [counter_high (4 bytes)][nonce (8 bytes)] */
u32_to_bytes_le(counter_high, extended_nonce);
memcpy(extended_nonce + 4, nonce, 8);
/* Generate keystream block using extended nonce */
int ret = chacha20_block(key, counter_low, extended_nonce, keystream);
if (ret != 0) {
return ret;
}
/* XOR with input to produce output */
size_t block_len = (length < CHACHA20_BLOCK_SIZE) ? length : CHACHA20_BLOCK_SIZE;
for (size_t i = 0; i < block_len; i++) {
output[offset + i] = input[offset + i] ^ keystream[i];
}
/* Move to next block */
offset += block_len;
length -= block_len;
counter_low++;
/* Check for counter_low overflow and increment counter_high */
if (counter_low == 0) {
counter_high++;
/* Check for counter_high overflow (extremely unlikely - > 1 exabyte) */
if (counter_high == 0) {
return -1; /* Extended counter wrapped around */
}
}
}
return 0;
}

View File

@@ -63,10 +63,10 @@ int chacha20_block(const uint8_t key[32], uint32_t counter,
/** /**
* ChaCha20 encryption/decryption * ChaCha20 encryption/decryption
* *
* Encrypts or decrypts data using ChaCha20 stream cipher. * Encrypts or decrypts data using ChaCha20 stream cipher.
* Since ChaCha20 is a stream cipher, encryption and decryption are the same operation. * Since ChaCha20 is a stream cipher, encryption and decryption are the same operation.
* *
* @param key[in] 32-byte key * @param key[in] 32-byte key
* @param counter[in] Initial 32-bit counter value * @param counter[in] Initial 32-bit counter value
* @param nonce[in] 12-byte nonce * @param nonce[in] 12-byte nonce
@@ -75,10 +75,29 @@ int chacha20_block(const uint8_t key[32], uint32_t counter,
* @param length[in] Length of input data in bytes * @param length[in] Length of input data in bytes
* @return 0 on success, negative on error * @return 0 on success, negative on error
*/ */
int chacha20_encrypt(const uint8_t key[32], uint32_t counter, int chacha20_encrypt(const uint8_t key[32], uint32_t counter,
const uint8_t nonce[12], const uint8_t* input, const uint8_t nonce[12], const uint8_t* input,
uint8_t* output, size_t length); uint8_t* output, size_t length);
/**
* ChaCha20 encryption/decryption with extended counter (64-bit)
*
* Extended version that supports files larger than 256GB by using
* part of the nonce as a high-order counter extension.
*
* @param key[in] 32-byte key
* @param counter_low[in] Initial 32-bit counter value (low bits)
* @param counter_high[in] Initial 32-bit counter value (high bits)
* @param nonce[in] 8-byte reduced nonce (instead of 12)
* @param input[in] Input data to encrypt/decrypt
* @param output[out] Output buffer (can be same as input)
* @param length[in] Length of input data in bytes
* @return 0 on success, negative on error
*/
int chacha20_encrypt_extended(const uint8_t key[32], uint32_t counter_low,
uint32_t counter_high, const uint8_t nonce[8],
const uint8_t* input, uint8_t* output, size_t length);
/* /*
* ============================================================================ * ============================================================================
* UTILITY FUNCTIONS * UTILITY FUNCTIONS

View File

@@ -1,35 +0,0 @@
#define _POSIX_C_SOURCE 200809L
#define _DEFAULT_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/statvfs.h>
#include <sys/ioctl.h>
#include <dirent.h>
#include <time.h>
#include <ctype.h>
#include <termios.h>
#include <fcntl.h>
#include <math.h>
#include "nostr_chacha20.h"
#include "otp.h"
#define MAX_INPUT_SIZE 4096
#define MAX_LINE_LENGTH 1024
#define MAX_HASH_LENGTH 65
#define PROGRESS_UPDATE_INTERVAL (64 * 1024 * 1024) // 64MB intervals
#define DEFAULT_PADS_DIR "pads"
#define FILES_DIR "files"
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// GLOBAL VARIABLES
///////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
char current_pads_dir[512] = DEFAULT_PADS_DIR;

View File

@@ -16,7 +16,7 @@
#include <fcntl.h> #include <fcntl.h>
#include <math.h> #include <math.h>
#include <errno.h> #include <errno.h>
#include "otp.h" #include "main.h"
// Extracted pad management functions from otp.c // Extracted pad management functions from otp.c
@@ -43,9 +43,9 @@ int show_pad_info(const char* chksum) {
printf("ChkSum: %s\n", chksum); printf("ChkSum: %s\n", chksum);
printf("File: %s\n", pad_filename); printf("File: %s\n", pad_filename);
double size_gb = (double)st.st_size / (1024.0 * 1024.0 * 1024.0); double size_gb = (double)st.st_size / (1000.0 * 1000.0 * 1000.0);
double used_gb = (double)used_bytes / (1024.0 * 1024.0 * 1024.0); double used_gb = (double)used_bytes / (1000.0 * 1000.0 * 1000.0);
double remaining_gb = (double)(st.st_size - used_bytes) / (1024.0 * 1024.0 * 1024.0); double remaining_gb = (double)(st.st_size - used_bytes) / (1000.0 * 1000.0 * 1000.0);
printf("Total size: %.2f GB (%lu bytes)\n", size_gb, st.st_size); printf("Total size: %.2f GB (%lu bytes)\n", size_gb, st.st_size);
printf("Used: %.2f GB (%lu bytes)\n", used_gb, used_bytes); printf("Used: %.2f GB (%lu bytes)\n", used_gb, used_bytes);
@@ -89,18 +89,18 @@ int generate_pad(uint64_t size_bytes, int display_progress) {
const char* pads_dir = get_current_pads_dir(); const char* pads_dir = get_current_pads_dir();
struct statvfs stat; struct statvfs stat;
if (statvfs(pads_dir, &stat) == 0) { if (statvfs(pads_dir, &stat) == 0) {
// Use f_bfree (total free blocks) instead of f_bavail (available to non-root) // Use f_bavail (available to non-root users) for accurate space reporting
// This gives the actual free space on the filesystem, which is more accurate // This accounts for filesystem reserved space (e.g., 5% on ext4)
// for removable media and user-owned directories uint64_t available_bytes = stat.f_bavail * stat.f_frsize;
uint64_t available_bytes = stat.f_bfree * stat.f_frsize; double available_gb = (double)available_bytes / (1000.0 * 1000.0 * 1000.0);
double available_gb = (double)available_bytes / (1024.0 * 1024.0 * 1024.0); double required_gb = (double)size_bytes / (1000.0 * 1000.0 * 1000.0);
double required_gb = (double)size_bytes / (1024.0 * 1024.0 * 1024.0);
if (available_bytes < size_bytes) { if (available_bytes < size_bytes) {
printf("\n⚠ WARNING: Insufficient disk space!\n"); printf("\n⚠ WARNING: Insufficient disk space!\n");
printf(" Required: %.2f GB\n", required_gb); printf(" Required: %.2f GB (%lu bytes)\n", required_gb, size_bytes);
printf(" Available: %.2f GB\n", available_gb); printf(" Available: %.2f GB (%lu bytes)\n", available_gb, available_bytes);
printf(" Shortfall: %.2f GB\n", required_gb - available_gb); printf(" Shortfall: %.2f GB\n", required_gb - available_gb);
printf(" Location: %s\n", pads_dir);
printf("\nContinue anyway? (y/N): "); printf("\nContinue anyway? (y/N): ");
char response[10]; char response[10];
@@ -129,11 +129,54 @@ int generate_pad(uint64_t size_bytes, int display_progress) {
FILE* pad_file = fopen(temp_filename, "wb"); FILE* pad_file = fopen(temp_filename, "wb");
if (!pad_file) { if (!pad_file) {
printf("Error: Cannot create temporary pad file %s\n", temp_filename); printf("Error: Cannot create temporary pad file '%s': %s (errno %d)\n",
temp_filename, strerror(errno), errno);
fclose(urandom); fclose(urandom);
return 1; return 1;
} }
// Preallocate full file size using posix_fallocate for guaranteed space reservation
// This actually allocates disk blocks (unlike ftruncate which creates sparse files)
int fd = fileno(pad_file);
double size_gb = (double)size_bytes / (1000.0 * 1000.0 * 1000.0);
if (display_progress) {
printf("Allocating %.2f GB on disk...\n", size_gb);
}
int alloc_result = posix_fallocate(fd, 0, (off_t)size_bytes);
if (alloc_result != 0) {
printf("Error: Failed to allocate %.2f GB temp file: %s (errno %d)\n",
size_gb, strerror(alloc_result), alloc_result);
printf(" Temp file: %s\n", temp_filename);
printf(" Location: %s\n", pads_dir);
if (alloc_result == ENOSPC) {
printf(" Cause: No space left on device\n");
printf(" This means the actual available space is less than reported\n");
} else if (alloc_result == EOPNOTSUPP) {
printf(" Cause: Filesystem doesn't support posix_fallocate\n");
printf(" Falling back to ftruncate (sparse file)...\n");
if (ftruncate(fd, (off_t)size_bytes) != 0) {
printf(" Fallback failed: %s\n", strerror(errno));
fclose(pad_file);
fclose(urandom);
unlink(temp_filename);
return 1;
}
} else {
printf(" Possible causes: quota limits, filesystem restrictions\n");
fclose(pad_file);
fclose(urandom);
unlink(temp_filename);
return 1;
}
}
if (display_progress && alloc_result == 0) {
printf("✓ Allocated %.2f GB on disk (guaranteed space)\n", size_gb);
}
unsigned char buffer[64 * 1024]; // 64KB buffer unsigned char buffer[64 * 1024]; // 64KB buffer
uint64_t bytes_written = 0; uint64_t bytes_written = 0;
time_t start_time = time(NULL); time_t start_time = time(NULL);
@@ -149,7 +192,8 @@ int generate_pad(uint64_t size_bytes, int display_progress) {
} }
if (fread(buffer, 1, (size_t)chunk_size, urandom) != (size_t)chunk_size) { if (fread(buffer, 1, (size_t)chunk_size, urandom) != (size_t)chunk_size) {
printf("Error: Failed to read from /dev/urandom\n"); printf("Error: Failed to read %lu bytes from /dev/urandom at position %lu: %s (errno %d)\n",
chunk_size, bytes_written, strerror(errno), errno);
fclose(urandom); fclose(urandom);
fclose(pad_file); fclose(pad_file);
unlink(temp_filename); unlink(temp_filename);
@@ -157,7 +201,11 @@ int generate_pad(uint64_t size_bytes, int display_progress) {
} }
if (fwrite(buffer, 1, (size_t)chunk_size, pad_file) != (size_t)chunk_size) { if (fwrite(buffer, 1, (size_t)chunk_size, pad_file) != (size_t)chunk_size) {
printf("Error: Failed to write to pad file\n"); printf("Error: fwrite failed for %lu bytes at position %lu/%lu (%.1f%%): %s (errno %d)\n",
chunk_size, bytes_written, size_bytes,
(double)bytes_written / size_bytes * 100.0, strerror(errno), errno);
printf(" Temp file: %s\n", temp_filename);
printf(" Disk space was checked - possible causes: fragmentation, I/O timeout, quota\n");
fclose(urandom); fclose(urandom);
fclose(pad_file); fclose(pad_file);
unlink(temp_filename); unlink(temp_filename);
@@ -205,10 +253,10 @@ int generate_pad(uint64_t size_bytes, int display_progress) {
} }
// Initialize state file with offset 32 (first 32 bytes reserved for checksum encryption) // Initialize state file with offset 32 (first 32 bytes reserved for checksum encryption)
FILE* state_file = fopen(state_path, "wb"); FILE* state_file = fopen(state_path, "w");
if (state_file) { if (state_file) {
uint64_t reserved_bytes = 32; uint64_t reserved_bytes = 32;
fwrite(&reserved_bytes, sizeof(uint64_t), 1, state_file); fprintf(state_file, "offset=%lu\n", reserved_bytes);
fclose(state_file); fclose(state_file);
} else { } else {
printf("Error: Failed to create state file\n"); printf("Error: Failed to create state file\n");
@@ -216,8 +264,10 @@ int generate_pad(uint64_t size_bytes, int display_progress) {
return 1; return 1;
} }
double size_gb = (double)size_bytes / (1024.0 * 1024.0 * 1024.0); if (display_progress) {
printf("Generated pad: %s (%.2f GB)\n", pad_path, size_gb); double final_size_gb = (double)size_bytes / (1000.0 * 1000.0 * 1000.0);
printf("Generated pad: %s (%.2f GB)\n", pad_path, final_size_gb);
}
printf("Pad checksum: %s\n", chksum_hex); printf("Pad checksum: %s\n", chksum_hex);
printf("State file: %s\n", state_path); printf("State file: %s\n", state_path);
printf("Pad file set to read-only\n"); printf("Pad file set to read-only\n");
@@ -242,7 +292,7 @@ int read_state_offset(const char* pad_chksum, uint64_t* offset) {
return 0; return 0;
} }
// Try to read as text format first (new format) // Read text format only (required format: "offset=<number>")
char line[128]; char line[128];
if (fgets(line, sizeof(line), state_file)) { if (fgets(line, sizeof(line), state_file)) {
// Check if it's text format (starts with "offset=") // Check if it's text format (starts with "offset=")
@@ -252,21 +302,13 @@ int read_state_offset(const char* pad_chksum, uint64_t* offset) {
return 0; return 0;
} }
// Not text format, try binary format (legacy) // Not in proper text format - error
fclose(state_file); fclose(state_file);
state_file = fopen(state_filename, "rb"); fprintf(stderr, "Error: State file '%s' is not in proper text format\n", state_filename);
if (!state_file) { fprintf(stderr, "Expected format: offset=<number>\n");
*offset = 0; fprintf(stderr, "Please convert old binary state files to text format\n");
return 0; *offset = 0;
} return 1;
if (fread(offset, sizeof(uint64_t), 1, state_file) != 1) {
fclose(state_file);
*offset = 0;
return 0;
}
fclose(state_file);
return 0;
} }
fclose(state_file); fclose(state_file);
@@ -384,25 +426,25 @@ char* select_pad_interactive(const char* title, const char* prompt, pad_filter_t
} }
// Format total size // Format total size
if (st.st_size < 1024) { if (st.st_size < 1000) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%luB", st.st_size); snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%luB", st.st_size);
} else if (st.st_size < 1024 * 1024) { } else if (st.st_size < 1000 * 1000) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fKB", (double)st.st_size / 1024.0); snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fKB", (double)st.st_size / 1000.0);
} else if (st.st_size < 1024 * 1024 * 1024) { } else if (st.st_size < 1000 * 1000 * 1000) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fMB", (double)st.st_size / (1024.0 * 1024.0)); snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fMB", (double)st.st_size / (1000.0 * 1000.0));
} else { } else {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.2fGB", (double)st.st_size / (1024.0 * 1024.0 * 1024.0)); snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.2fGB", (double)st.st_size / (1000.0 * 1000.0 * 1000.0));
} }
// Format used size // Format used size
if (used_bytes < 1024) { if (used_bytes < 1000) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%luB", used_bytes); snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%luB", used_bytes);
} else if (used_bytes < 1024 * 1024) { } else if (used_bytes < 1000 * 1000) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fKB", (double)used_bytes / 1024.0); snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fKB", (double)used_bytes / 1000.0);
} else if (used_bytes < 1024 * 1024 * 1024) { } else if (used_bytes < 1000 * 1000 * 1000) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fMB", (double)used_bytes / (1024.0 * 1024.0)); snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fMB", (double)used_bytes / (1000.0 * 1000.0));
} else { } else {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.2fGB", (double)used_bytes / (1024.0 * 1024.0 * 1024.0)); snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.2fGB", (double)used_bytes / (1000.0 * 1000.0 * 1000.0));
} }
// Calculate percentage // Calculate percentage
@@ -428,6 +470,13 @@ char* select_pad_interactive(const char* title, const char* prompt, pad_filter_t
return NULL; return NULL;
} }
// If only one pad available, auto-select it
if (pad_count == 1) {
printf("\n%s\n", title);
printf("Only one pad available - auto-selecting: %.16s...\n\n", pads[0].chksum);
return strdup(pads[0].chksum);
}
// Calculate minimal unique prefixes for each pad // Calculate minimal unique prefixes for each pad
char prefixes[100][65]; char prefixes[100][65];
int prefix_lengths[100]; int prefix_lengths[100];
@@ -584,6 +633,27 @@ int handle_pads_menu(void) {
// Get list of pads from current directory // Get list of pads from current directory
const char* pads_dir = get_current_pads_dir(); const char* pads_dir = get_current_pads_dir();
// Display directory and space information
printf("Pads Directory: %s\n", pads_dir);
// Get filesystem space information
struct statvfs vfs_stat;
if (statvfs(pads_dir, &vfs_stat) == 0) {
uint64_t total_bytes = vfs_stat.f_blocks * vfs_stat.f_frsize;
uint64_t available_bytes = vfs_stat.f_bavail * vfs_stat.f_frsize;
uint64_t used_bytes = total_bytes - (vfs_stat.f_bfree * vfs_stat.f_frsize);
double total_gb = (double)total_bytes / (1000.0 * 1000.0 * 1000.0);
double available_gb = (double)available_bytes / (1000.0 * 1000.0 * 1000.0);
double used_gb = (double)used_bytes / (1000.0 * 1000.0 * 1000.0);
double used_percent = (double)used_bytes / total_bytes * 100.0;
printf("Drive Space: %.2f GB total, %.2f GB used (%.1f%%), %.2f GB available\n",
total_gb, used_gb, used_percent, available_gb);
}
printf("\n");
DIR* dir = opendir(pads_dir); DIR* dir = opendir(pads_dir);
if (!dir) { if (!dir) {
printf("Error: Cannot open pads directory %s\n", pads_dir); printf("Error: Cannot open pads directory %s\n", pads_dir);
@@ -619,25 +689,25 @@ int handle_pads_menu(void) {
read_state_offset(pads[pad_count].chksum, &used_bytes); read_state_offset(pads[pad_count].chksum, &used_bytes);
// Format total size // Format total size
if (st.st_size < 1024) { if (st.st_size < 1000) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%luB", st.st_size); snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%luB", st.st_size);
} else if (st.st_size < 1024 * 1024) { } else if (st.st_size < 1000 * 1000) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fKB", (double)st.st_size / 1024.0); snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fKB", (double)st.st_size / 1000.0);
} else if (st.st_size < 1024 * 1024 * 1024) { } else if (st.st_size < 1000 * 1000 * 1000) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fMB", (double)st.st_size / (1024.0 * 1024.0)); snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fMB", (double)st.st_size / (1000.0 * 1000.0));
} else { } else {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.2fGB", (double)st.st_size / (1024.0 * 1024.0 * 1024.0)); snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.2fGB", (double)st.st_size / (1000.0 * 1000.0 * 1000.0));
} }
// Format used size // Format used size
if (used_bytes < 1024) { if (used_bytes < 1000) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%luB", used_bytes); snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%luB", used_bytes);
} else if (used_bytes < 1024 * 1024) { } else if (used_bytes < 1000 * 1000) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fKB", (double)used_bytes / 1024.0); snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fKB", (double)used_bytes / 1000.0);
} else if (used_bytes < 1024 * 1024 * 1024) { } else if (used_bytes < 1000 * 1000 * 1000) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fMB", (double)used_bytes / (1024.0 * 1024.0)); snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fMB", (double)used_bytes / (1000.0 * 1000.0));
} else { } else {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.2fGB", (double)used_bytes / (1024.0 * 1024.0 * 1024.0)); snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.2fGB", (double)used_bytes / (1000.0 * 1000.0 * 1000.0));
} }
// Calculate percentage // Calculate percentage
@@ -949,9 +1019,9 @@ int handle_verify_pad(const char* chksum) {
printf("ChkSum: %s\n", chksum); printf("ChkSum: %s\n", chksum);
printf("File: %s\n", pad_filename); printf("File: %s\n", pad_filename);
double size_gb = (double)st.st_size / (1024.0 * 1024.0 * 1024.0); double size_gb = (double)st.st_size / (1000.0 * 1000.0 * 1000.0);
double used_gb = (double)used_bytes / (1024.0 * 1024.0 * 1024.0); double used_gb = (double)used_bytes / (1000.0 * 1000.0 * 1000.0);
double remaining_gb = (double)(st.st_size - used_bytes) / (1024.0 * 1024.0 * 1024.0); double remaining_gb = (double)(st.st_size - used_bytes) / (1000.0 * 1000.0 * 1000.0);
printf("Total size: %.2f GB (%lu bytes)\n", size_gb, st.st_size); printf("Total size: %.2f GB (%lu bytes)\n", size_gb, st.st_size);
printf("Used: %.2f GB (%lu bytes)\n", used_gb, used_bytes); printf("Used: %.2f GB (%lu bytes)\n", used_gb, used_bytes);
@@ -1017,7 +1087,7 @@ int handle_delete_pad(const char* chksum) {
uint64_t used_bytes; uint64_t used_bytes;
read_state_offset(chksum, &used_bytes); read_state_offset(chksum, &used_bytes);
double size_gb = (double)st.st_size / (1024.0 * 1024.0 * 1024.0); double size_gb = (double)st.st_size / (1000.0 * 1000.0 * 1000.0);
printf("\nPad to delete:\n"); printf("\nPad to delete:\n");
printf("Checksum: %s\n", chksum); printf("Checksum: %s\n", chksum);
printf("Size: %.2f GB\n", size_gb); printf("Size: %.2f GB\n", size_gb);
@@ -1205,7 +1275,7 @@ int handle_add_entropy_to_pad(const char* pad_chksum) {
target_bytes = (size_t)pad_stat.st_size; target_bytes = (size_t)pad_stat.st_size;
printf("\nHardware RNG selected - will enhance entire pad with hardware entropy\n"); printf("\nHardware RNG selected - will enhance entire pad with hardware entropy\n");
printf("Pad size: %.2f GB (%zu bytes)\n", printf("Pad size: %.2f GB (%zu bytes)\n",
(double)target_bytes / (1024.0 * 1024.0 * 1024.0), target_bytes); (double)target_bytes / (1000.0 * 1000.0 * 1000.0), target_bytes);
} else if (entropy_source == ENTROPY_SOURCE_FILE) { } else if (entropy_source == ENTROPY_SOURCE_FILE) {
// Special handling for file entropy - ask for file path first // Special handling for file entropy - ask for file path first
char file_path[512]; char file_path[512];
@@ -1227,7 +1297,7 @@ int handle_add_entropy_to_pad(const char* pad_chksum) {
printf("\nFile vs Pad Size Analysis:\n"); printf("\nFile vs Pad Size Analysis:\n");
printf(" Entropy file: %zu bytes\n", file_size); printf(" Entropy file: %zu bytes\n", file_size);
printf(" Target pad: %.2f GB (%lu bytes)\n", printf(" Target pad: %.2f GB (%lu bytes)\n",
(double)pad_size / (1024.0 * 1024.0 * 1024.0), pad_size); (double)pad_size / (1000.0 * 1000.0 * 1000.0), pad_size);
// Smart method selection based on file size vs pad size // Smart method selection based on file size vs pad size
if (file_size >= pad_size) { if (file_size >= pad_size) {
@@ -1411,10 +1481,10 @@ int handle_add_entropy_to_pad(const char* pad_chksum) {
printf("✓ Device test successful!\n"); printf("✓ Device test successful!\n");
printf(" Test collected: %zu bytes in %.1f seconds\n", test_collected, test_time); printf(" Test collected: %zu bytes in %.1f seconds\n", test_collected, test_time);
printf(" Speed: %.1f KB/s (%.1f MB/s)\n", bytes_per_second / 1024.0, bytes_per_second / (1024.0 * 1024.0)); printf(" Speed: %.1f KB/s (%.1f MB/s)\n", bytes_per_second / 1000.0, bytes_per_second / (1000.0 * 1000.0));
printf("\nPad enhancement estimate:\n"); printf("\nPad enhancement estimate:\n");
printf(" Pad size: %.2f GB (%zu bytes)\n", (double)target_bytes / (1024.0 * 1024.0 * 1024.0), target_bytes); printf(" Pad size: %.2f GB (%zu bytes)\n", (double)target_bytes / (1000.0 * 1000.0 * 1000.0), target_bytes);
if (estimated_hours >= 1.0) { if (estimated_hours >= 1.0) {
printf(" Estimated time: %.1f hours\n", estimated_hours); printf(" Estimated time: %.1f hours\n", estimated_hours);

View File

@@ -1,6 +1,6 @@
#include <string.h> #include <string.h>
#include <stdlib.h> #include <stdlib.h>
#include "otp.h" #include "main.h"
// Global state variables // Global state variables
static char current_pads_dir[512] = DEFAULT_PADS_DIR; static char current_pads_dir[512] = DEFAULT_PADS_DIR;

View File

@@ -17,7 +17,7 @@
#include <math.h> #include <math.h>
#include <errno.h> #include <errno.h>
#include "nostr_chacha20.h" #include "nostr_chacha20.h"
#include "otp.h" #include "main.h"
// Basic TrueRNG entropy collection function // Basic TrueRNG entropy collection function
int collect_truerng_entropy(unsigned char* entropy_buffer, size_t target_bytes, size_t* collected_bytes, int display_progress) { int collect_truerng_entropy(unsigned char* entropy_buffer, size_t target_bytes, size_t* collected_bytes, int display_progress) {
@@ -153,7 +153,7 @@ int collect_truerng_entropy_streaming_from_device(const hardware_rng_device_t* d
if (display_progress) { if (display_progress) {
printf("Streaming entropy from %s to pad...\n", device->friendly_name); printf("Streaming entropy from %s to pad...\n", device->friendly_name);
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1024.0*1024.0*1024.0), pad_size); printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1000.0*1000.0*1000.0), pad_size);
printf("Enhancing entire pad with hardware entropy\n"); printf("Enhancing entire pad with hardware entropy\n");
} }

163
src/ui.c
View File

@@ -15,7 +15,7 @@
#include <termios.h> #include <termios.h>
#include <fcntl.h> #include <fcntl.h>
#include <math.h> #include <math.h>
#include "otp.h" #include "main.h"
// Initialize terminal dimensions // Initialize terminal dimensions
void init_terminal_dimensions(void) { void init_terminal_dimensions(void) {
@@ -99,6 +99,9 @@ int interactive_mode(void) {
case 'F': case 'F':
handle_file_encrypt(); handle_file_encrypt();
break; break;
case 'R':
handle_directory_encrypt();
break;
case 'D': case 'D':
handle_decrypt_menu(); handle_decrypt_menu();
break; break;
@@ -120,14 +123,17 @@ int interactive_mode(void) {
void show_main_menu(void) { void show_main_menu(void) {
printf("\n"); printf("\n");
print_centered_header("Main Menu - OTP v0.3.16", 0); char header[64];
snprintf(header, sizeof(header), "Main Menu - OTP %s", OTP_VERSION);
print_centered_header(header, 0);
printf("\n"); printf("\n");
printf(" \033[4mT\033[0mext encrypt\n"); //TEXT ENCRYPT printf(" \033[4mT\033[0mext encrypt\n"); //TEXT ENCRYPT
printf(" \033[4mF\033[0mile encrypt\n"); //FILE ENCRYPT printf(" \033[4mF\033[0mile encrypt\n"); //FILE ENCRYPT
printf(" \033[4mD\033[0mecrypt\n"); //DECRYPT printf(" Di\033[4mr\033[0mectory encrypt\n"); //DIRECTORY ENCRYPT
printf(" \033[4mP\033[0mads\n"); //PADS printf(" \033[4mD\033[0mecrypt\n"); //DECRYPT
printf(" E\033[4mx\033[0mit\n"); //EXIT printf(" \033[4mP\033[0mads\n"); //PADS
printf(" E\033[4mx\033[0mit\n"); //EXIT
printf("\nSelect option: "); printf("\nSelect option: ");
} }
@@ -150,7 +156,7 @@ int handle_generate_menu(void) {
return 1; return 1;
} }
double size_gb = (double)size / (1024.0 * 1024.0 * 1024.0); double size_gb = (double)size / (1000.0 * 1000.0 * 1000.0);
printf("Generating %.2f GB pad...\n", size_gb); printf("Generating %.2f GB pad...\n", size_gb);
printf("Note: Use 'Add entropy' in Pads menu to enhance randomness after creation.\n"); printf("Note: Use 'Add entropy' in Pads menu to enhance randomness after creation.\n");
@@ -328,7 +334,15 @@ int handle_decrypt_menu(void) {
temp_default[sizeof(temp_default) - 1] = '\0'; temp_default[sizeof(temp_default) - 1] = '\0';
// Remove common encrypted extensions to get a better default // Remove common encrypted extensions to get a better default
if (strstr(temp_default, ".otp.asc")) { if (strstr(temp_default, ".tar.gz.otp")) {
// Directory archive - remove .tar.gz.otp to get original directory name
char* ext_pos = strstr(temp_default, ".tar.gz.otp");
*ext_pos = '\0';
} else if (strstr(temp_default, ".tar.otp")) {
// Directory archive without compression - remove .tar.otp
char* ext_pos = strstr(temp_default, ".tar.otp");
*ext_pos = '\0';
} else if (strstr(temp_default, ".otp.asc")) {
// Replace .otp.asc with original extension or no extension // Replace .otp.asc with original extension or no extension
char* ext_pos = strstr(temp_default, ".otp.asc"); char* ext_pos = strstr(temp_default, ".otp.asc");
*ext_pos = '\0'; *ext_pos = '\0';
@@ -350,7 +364,23 @@ int handle_decrypt_menu(void) {
return 1; return 1;
} }
return decrypt_file(selected_file, output_file); // Check if it's a directory archive
if (strstr(selected_file, ".tar.gz.otp") || strstr(selected_file, ".tar.otp")) {
// It's a directory archive - extract to directory
char extract_dir[512];
strncpy(extract_dir, output_file, sizeof(extract_dir) - 1);
extract_dir[sizeof(extract_dir) - 1] = '\0';
// Remove .tar.gz.otp or .tar.otp extension to get directory name
char* ext = strstr(extract_dir, ".tar.gz.otp");
if (!ext) ext = strstr(extract_dir, ".tar.otp");
if (ext) *ext = '\0';
printf("Extracting directory archive to: %s/\n", extract_dir);
return decrypt_and_extract_directory(selected_file, extract_dir);
} else {
return decrypt_file(selected_file, output_file);
}
} }
else if (strncmp(input_line, "-----BEGIN OTP MESSAGE-----", 27) == 0) { else if (strncmp(input_line, "-----BEGIN OTP MESSAGE-----", 27) == 0) {
// Looks like ASCII armor - collect the full message // Looks like ASCII armor - collect the full message
@@ -380,7 +410,15 @@ int handle_decrypt_menu(void) {
temp_default[sizeof(temp_default) - 1] = '\0'; temp_default[sizeof(temp_default) - 1] = '\0';
// Remove common encrypted extensions to get a better default // Remove common encrypted extensions to get a better default
if (strstr(temp_default, ".otp.asc")) { if (strstr(temp_default, ".tar.gz.otp")) {
// Directory archive - remove .tar.gz.otp to get original directory name
char* ext_pos = strstr(temp_default, ".tar.gz.otp");
*ext_pos = '\0';
} else if (strstr(temp_default, ".tar.otp")) {
// Directory archive without compression - remove .tar.otp
char* ext_pos = strstr(temp_default, ".tar.otp");
*ext_pos = '\0';
} else if (strstr(temp_default, ".otp.asc")) {
// Replace .otp.asc with original extension or no extension // Replace .otp.asc with original extension or no extension
char* ext_pos = strstr(temp_default, ".otp.asc"); char* ext_pos = strstr(temp_default, ".otp.asc");
*ext_pos = '\0'; *ext_pos = '\0';
@@ -402,7 +440,23 @@ int handle_decrypt_menu(void) {
return 1; return 1;
} }
return decrypt_file(input_line, output_file); // Check if it's a directory archive
if (strstr(input_line, ".tar.gz.otp") || strstr(input_line, ".tar.otp")) {
// It's a directory archive - extract to directory
char extract_dir[512];
strncpy(extract_dir, output_file, sizeof(extract_dir) - 1);
extract_dir[sizeof(extract_dir) - 1] = '\0';
// Remove .tar.gz.otp or .tar.otp extension to get directory name
char* ext = strstr(extract_dir, ".tar.gz.otp");
if (!ext) ext = strstr(extract_dir, ".tar.otp");
if (ext) *ext = '\0';
printf("Extracting directory archive to: %s/\n", extract_dir);
return decrypt_and_extract_directory(input_line, extract_dir);
} else {
return decrypt_file(input_line, output_file);
}
} else { } else {
printf("Input not recognized as ASCII armor or valid file path.\n"); printf("Input not recognized as ASCII armor or valid file path.\n");
return 1; return 1;
@@ -499,5 +553,90 @@ int handle_file_encrypt(void) {
int result = encrypt_file(selected_pad, input_file, output_filename, ascii_armor); int result = encrypt_file(selected_pad, input_file, output_filename, ascii_armor);
free(selected_pad); free(selected_pad);
return result;
}
int handle_directory_encrypt(void) {
printf("\n");
print_centered_header("Directory Encrypt", 0);
// Directory selection options
printf("\nDirectory selection options:\n");
printf(" 1. Type directory path directly\n");
printf(" 2. Use file manager (navigate to directory)\n");
printf("Enter choice (1-2): ");
char choice_input[10];
char dir_path[512];
if (!fgets(choice_input, sizeof(choice_input), stdin)) {
printf("Error: Failed to read input\n");
return 1;
}
if (atoi(choice_input) == 2) {
// Use directory manager
if (launch_directory_manager(".", dir_path, sizeof(dir_path)) != 0) {
printf("Falling back to manual directory path entry.\n");
printf("Enter directory path to encrypt: ");
if (!fgets(dir_path, sizeof(dir_path), stdin)) {
printf("Error: Failed to read input\n");
return 1;
}
dir_path[strcspn(dir_path, "\n")] = 0;
}
} else {
// Direct directory path input
printf("Enter directory path to encrypt: ");
if (!fgets(dir_path, sizeof(dir_path), stdin)) {
printf("Error: Failed to read input\n");
return 1;
}
dir_path[strcspn(dir_path, "\n")] = 0;
}
// Check if directory exists
struct stat st;
if (stat(dir_path, &st) != 0 || !S_ISDIR(st.st_mode)) {
printf("Error: '%s' is not a valid directory\n", dir_path);
return 1;
}
// Select pad
char* selected_pad = select_pad_interactive("Select Pad for Directory Encryption",
"Select pad (by prefix)",
PAD_FILTER_ALL, 1);
if (!selected_pad) {
printf("Directory encryption cancelled.\n");
return 1;
}
// Generate default output filename - append .tar.gz.otp to the directory path
char default_output[1024];
// Remove trailing slash if present
char clean_path[512];
strncpy(clean_path, dir_path, sizeof(clean_path) - 1);
clean_path[sizeof(clean_path) - 1] = '\0';
size_t path_len = strlen(clean_path);
if (path_len > 0 && clean_path[path_len - 1] == '/') {
clean_path[path_len - 1] = '\0';
}
snprintf(default_output, sizeof(default_output), "%s.tar.gz.otp", clean_path);
// Get output filename
char output_file[512];
if (get_filename_with_default("Output filename:", default_output, output_file, sizeof(output_file)) != 0) {
printf("Error: Failed to read input\n");
free(selected_pad);
return 1;
}
// Encrypt directory
int result = encrypt_directory(dir_path, selected_pad, output_file);
free(selected_pad);
return result; return result;
} }

View File

@@ -15,7 +15,7 @@
#include <termios.h> #include <termios.h>
#include <fcntl.h> #include <fcntl.h>
#include <math.h> #include <math.h>
#include "otp.h" #include "main.h"
// Global variables for preferences // Global variables for preferences
static char default_pad_path[1024] = ""; static char default_pad_path[1024] = "";
@@ -240,6 +240,83 @@ int launch_file_manager(const char* start_directory, char* selected_file, size_t
return 1; // Fall back to manual entry return 1; // Fall back to manual entry
} }
int launch_directory_manager(const char* start_directory, char* selected_dir, size_t buffer_size) {
char* fm = get_preferred_file_manager();
if (!fm) {
printf("No file manager found. Please install ranger, fzf, nnn, or lf.\n");
printf("Falling back to manual directory path entry.\n");
return 1; // Fall back to manual entry
}
char temp_filename[64];
snprintf(temp_filename, sizeof(temp_filename), "/tmp/otp_dir_%ld.tmp", time(NULL));
char command[512];
int result = 1;
printf("Opening %s for directory selection...\n", fm);
printf("Navigate INTO the directory you want to encrypt, then press 'q' to quit and select it.\n");
if (strcmp(fm, "ranger") == 0) {
snprintf(command, sizeof(command), "cd '%s' && ranger --choosedir=%s",
start_directory ? start_directory : ".", temp_filename);
} else if (strcmp(fm, "fzf") == 0) {
// fzf doesn't have directory-only mode easily, use find
snprintf(command, sizeof(command), "cd '%s' && find . -type d | fzf > %s",
start_directory ? start_directory : ".", temp_filename);
} else if (strcmp(fm, "nnn") == 0) {
snprintf(command, sizeof(command), "cd '%s' && nnn -p %s",
start_directory ? start_directory : ".", temp_filename);
} else if (strcmp(fm, "lf") == 0) {
snprintf(command, sizeof(command), "cd '%s' && lf -selection-path=%s",
start_directory ? start_directory : ".", temp_filename);
}
result = system(command);
if (result == 0 || result == 256) { // Some file managers return 256 on success
// Read selected directory from temp file
FILE* temp_file = fopen(temp_filename, "r");
if (temp_file) {
if (fgets(selected_dir, buffer_size, temp_file)) {
// Remove trailing newline
selected_dir[strcspn(selected_dir, "\n\r")] = 0;
// For relative paths, make absolute if needed
if (selected_dir[0] == '.' && selected_dir[1] == '/') {
char current_dir[512];
if (getcwd(current_dir, sizeof(current_dir))) {
char abs_path[1024];
snprintf(abs_path, sizeof(abs_path), "%s/%s", current_dir, selected_dir + 2);
strncpy(selected_dir, abs_path, buffer_size - 1);
selected_dir[buffer_size - 1] = '\0';
}
} else if (selected_dir[0] != '/') {
// Relative path without ./
char current_dir[512];
if (getcwd(current_dir, sizeof(current_dir))) {
char abs_path[1024];
snprintf(abs_path, sizeof(abs_path), "%s/%s", current_dir, selected_dir);
strncpy(selected_dir, abs_path, buffer_size - 1);
selected_dir[buffer_size - 1] = '\0';
}
}
fclose(temp_file);
unlink(temp_filename);
free(fm);
return 0; // Success
}
fclose(temp_file);
}
}
// Clean up and indicate failure
unlink(temp_filename);
free(fm);
return 1; // Fall back to manual entry
}
// Stdin detection functions implementation // Stdin detection functions implementation
int has_stdin_data(void) { int has_stdin_data(void) {
// Check if stdin is a pipe/redirect (not a terminal) // Check if stdin is a pipe/redirect (not a terminal)
@@ -519,13 +596,13 @@ uint64_t parse_size_string(const char* size_str) {
} }
if (strcmp(unit, "K") == 0 || strcmp(unit, "KB") == 0) { if (strcmp(unit, "K") == 0 || strcmp(unit, "KB") == 0) {
multiplier = 1024ULL; multiplier = 1000ULL;
} else if (strcmp(unit, "M") == 0 || strcmp(unit, "MB") == 0) { } else if (strcmp(unit, "M") == 0 || strcmp(unit, "MB") == 0) {
multiplier = 1024ULL * 1024ULL; multiplier = 1000ULL * 1000ULL;
} else if (strcmp(unit, "G") == 0 || strcmp(unit, "GB") == 0) { } else if (strcmp(unit, "G") == 0 || strcmp(unit, "GB") == 0) {
multiplier = 1024ULL * 1024ULL * 1024ULL; multiplier = 1000ULL * 1000ULL * 1000ULL;
} else if (strcmp(unit, "T") == 0 || strcmp(unit, "TB") == 0) { } else if (strcmp(unit, "T") == 0 || strcmp(unit, "TB") == 0) {
multiplier = 1024ULL * 1024ULL * 1024ULL * 1024ULL; multiplier = 1000ULL * 1000ULL * 1000ULL * 1000ULL;
} else { } else {
return 0; // Invalid unit return 0; // Invalid unit
} }

BIN
tests/test_chacha20_extended Executable file

Binary file not shown.

View File

@@ -0,0 +1,263 @@
/*
* test_chacha20_extended.c - Test ChaCha20 extended counter implementation
*
* This test verifies that the extended counter properly handles:
* 1. Counter overflow at 2^32 blocks (256GB boundary)
* 2. Correct keystream generation across the overflow boundary
* 3. No duplicate keystream blocks
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include "../src/nostr_chacha20.h"
#define TEST_BLOCK_SIZE 64
#define BLOCKS_NEAR_OVERFLOW 10 // Test blocks around overflow point
// Test helper: Compare two blocks for equality
int blocks_equal(const uint8_t* block1, const uint8_t* block2, size_t len) {
return memcmp(block1, block2, len) == 0;
}
// Test 1: Verify extended counter handles overflow correctly
int test_counter_overflow() {
printf("Test 1: Counter overflow handling\n");
printf(" Testing counter transition from 0xFFFFFFFF to 0x00000000...\n");
uint8_t key[32];
uint8_t nonce[8];
uint8_t input[TEST_BLOCK_SIZE];
uint8_t output1[TEST_BLOCK_SIZE];
uint8_t output2[TEST_BLOCK_SIZE];
uint8_t output3[TEST_BLOCK_SIZE];
// Initialize test data
memset(key, 0xAA, 32);
memset(nonce, 0xBB, 8);
memset(input, 0, TEST_BLOCK_SIZE);
// Test at counter_low = 0xFFFFFFFE, counter_high = 0
uint32_t counter_low = 0xFFFFFFFE;
uint32_t counter_high = 0;
printf(" Block at counter_low=0xFFFFFFFE, counter_high=0...\n");
if (chacha20_encrypt_extended(key, counter_low, counter_high, nonce,
input, output1, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED: Error at counter_low=0xFFFFFFFE\n");
return 1;
}
// Test at counter_low = 0xFFFFFFFF, counter_high = 0
counter_low = 0xFFFFFFFF;
printf(" Block at counter_low=0xFFFFFFFF, counter_high=0...\n");
if (chacha20_encrypt_extended(key, counter_low, counter_high, nonce,
input, output2, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED: Error at counter_low=0xFFFFFFFF\n");
return 1;
}
// Test at counter_low = 0x00000000, counter_high = 1 (after overflow)
counter_low = 0x00000000;
counter_high = 1;
printf(" Block at counter_low=0x00000000, counter_high=1...\n");
if (chacha20_encrypt_extended(key, counter_low, counter_high, nonce,
input, output3, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED: Error at counter_low=0x00000000, counter_high=1\n");
return 1;
}
// Verify all three blocks are different (no keystream reuse)
if (blocks_equal(output1, output2, TEST_BLOCK_SIZE)) {
printf(" ❌ FAILED: Blocks at 0xFFFFFFFE and 0xFFFFFFFF are identical!\n");
return 1;
}
if (blocks_equal(output2, output3, TEST_BLOCK_SIZE)) {
printf(" ❌ FAILED: Blocks at 0xFFFFFFFF,0 and 0x00000000,1 are identical!\n");
return 1;
}
if (blocks_equal(output1, output3, TEST_BLOCK_SIZE)) {
printf(" ❌ FAILED: Blocks at 0xFFFFFFFE,0 and 0x00000000,1 are identical!\n");
return 1;
}
printf(" ✓ All blocks are unique across overflow boundary\n");
printf(" ✓ PASSED\n\n");
return 0;
}
// Test 2: Simulate processing data that crosses 256GB boundary
int test_large_file_simulation() {
printf("Test 2: Large file simulation (256GB+ boundary)\n");
printf(" Simulating processing across 256GB boundary...\n");
uint8_t key[32];
uint8_t nonce[8];
uint8_t input[1024];
uint8_t output[1024];
// Initialize test data
memset(key, 0x55, 32);
memset(nonce, 0x77, 8);
for (int i = 0; i < 1024; i++) {
input[i] = i & 0xFF;
}
// Simulate being at 256GB - 512 bytes (just before overflow)
// 256GB = 2^32 blocks * 64 bytes = 274,877,906,944 bytes
// Block number at 256GB - 512 bytes = 2^32 - 8 blocks
uint32_t counter_low = 0xFFFFFFF8; // 2^32 - 8
uint32_t counter_high = 0;
printf(" Processing 1KB starting at block 0xFFFFFFF8 (256GB - 512 bytes)...\n");
// This should cross the overflow boundary
int result = chacha20_encrypt_extended(key, counter_low, counter_high, nonce,
input, output, 1024);
if (result != 0) {
printf(" ❌ FAILED: Error processing data across 256GB boundary\n");
return 1;
}
printf(" ✓ Successfully processed data across 256GB boundary\n");
printf(" ✓ PASSED\n\n");
return 0;
}
// Test 3: Verify extended vs standard ChaCha20 compatibility
int test_compatibility() {
printf("Test 3: Compatibility with standard ChaCha20\n");
printf(" Verifying extended mode matches standard mode when counter_high=0...\n");
uint8_t key[32];
uint8_t nonce_standard[12];
uint8_t nonce_reduced[8];
uint8_t input[TEST_BLOCK_SIZE];
uint8_t output_standard[TEST_BLOCK_SIZE];
uint8_t output_extended[TEST_BLOCK_SIZE];
// Initialize test data
memset(key, 0x33, 32);
memset(nonce_standard, 0x44, 12);
memcpy(nonce_reduced, nonce_standard + 4, 8); // Extract last 8 bytes
memset(input, 0, TEST_BLOCK_SIZE);
uint32_t counter = 42;
// Standard ChaCha20
if (chacha20_encrypt(key, counter, nonce_standard, input,
output_standard, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED: Standard ChaCha20 error\n");
return 1;
}
// Extended ChaCha20 with counter_high=0 and matching nonce
// The extended version builds nonce as [counter_high][nonce_reduced]
// So we need to ensure the first 4 bytes of nonce_standard are 0
uint8_t nonce_standard_zero[12] = {0};
memcpy(nonce_standard_zero + 4, nonce_reduced, 8);
if (chacha20_encrypt(key, counter, nonce_standard_zero, input,
output_standard, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED: Standard ChaCha20 error\n");
return 1;
}
if (chacha20_encrypt_extended(key, counter, 0, nonce_reduced, input,
output_extended, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED: Extended ChaCha20 error\n");
return 1;
}
// Compare outputs
if (!blocks_equal(output_standard, output_extended, TEST_BLOCK_SIZE)) {
printf(" ❌ FAILED: Extended mode output differs from standard mode\n");
printf(" First 16 bytes of standard: ");
for (int i = 0; i < 16; i++) printf("%02x ", output_standard[i]);
printf("\n First 16 bytes of extended: ");
for (int i = 0; i < 16; i++) printf("%02x ", output_extended[i]);
printf("\n");
return 1;
}
printf(" ✓ Extended mode matches standard mode when counter_high=0\n");
printf(" ✓ PASSED\n\n");
return 0;
}
// Test 4: Stress test - verify no errors at extreme counter values
int test_extreme_values() {
printf("Test 4: Extreme counter values\n");
printf(" Testing at various extreme counter positions...\n");
uint8_t key[32];
uint8_t nonce[8];
uint8_t input[TEST_BLOCK_SIZE];
uint8_t output[TEST_BLOCK_SIZE];
memset(key, 0x99, 32);
memset(nonce, 0x66, 8);
memset(input, 0, TEST_BLOCK_SIZE);
// Test various extreme positions
struct {
uint32_t counter_low;
uint32_t counter_high;
const char* description;
} test_cases[] = {
{0x00000000, 0, "Start of first 256GB segment"},
{0xFFFFFFFF, 0, "End of first 256GB segment"},
{0x00000000, 1, "Start of second 256GB segment"},
{0xFFFFFFFF, 1, "End of second 256GB segment"},
{0x00000000, 0xFFFF, "Start of segment 65535"},
{0xFFFFFFFF, 0xFFFF, "End of segment 65535"},
};
for (size_t i = 0; i < sizeof(test_cases) / sizeof(test_cases[0]); i++) {
printf(" Testing: %s (0x%08X, 0x%08X)...\n",
test_cases[i].description,
test_cases[i].counter_low,
test_cases[i].counter_high);
if (chacha20_encrypt_extended(key, test_cases[i].counter_low,
test_cases[i].counter_high, nonce,
input, output, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED at %s\n", test_cases[i].description);
return 1;
}
}
printf(" ✓ All extreme values handled correctly\n");
printf(" ✓ PASSED\n\n");
return 0;
}
int main() {
printf("=================================================================\n");
printf("ChaCha20 Extended Counter Test Suite\n");
printf("=================================================================\n\n");
int failures = 0;
failures += test_counter_overflow();
failures += test_large_file_simulation();
failures += test_compatibility();
failures += test_extreme_values();
printf("=================================================================\n");
if (failures == 0) {
printf("✓ ALL TESTS PASSED\n");
printf("=================================================================\n");
printf("\nThe extended counter implementation is working correctly.\n");
printf("It can now handle pads larger than 256GB without overflow errors.\n");
return 0;
} else {
printf("❌ %d TEST(S) FAILED\n", failures);
printf("=================================================================\n");
return 1;
}
}