Compare commits

...

20 Commits

Author SHA1 Message Date
dce0a74945 Version v0.3.50 - Fixing browsing behavior 2026-01-28 06:54:57 -04:00
d8e65b1799 Version v0.3.49 - Working on directory naviagation 2026-01-27 10:24:23 -04:00
1e017d81b7 Fixing user interface problems 2026-01-17 07:39:23 -04:00
2e2f78720e Added exponential padding to increase security. 2026-01-13 03:13:54 -05:00
302b200548 Version v0.3.48 - -m Fix directory encryption output filename - strip trailing slash from directory path 2025-12-27 12:18:08 -05:00
18a4441746 Version v0.3.47 - -m Fix directory decryption - skip pause for temp files to allow extraction to continue 2025-12-27 12:13:57 -05:00
974470238d Version v0.3.46 - -m Fix directory decryption default filename - remove .tar.gz.otp extension 2025-12-27 12:10:14 -05:00
7c2821dd0d Version v0.3.45 - -m Fix directory encryption output path - save in same directory as source 2025-12-27 12:03:27 -05:00
6f3976bc07 Version v0.3.44 - -m Disable pad integrity check during decryption for performance - trust filename checksum 2025-12-27 11:59:37 -05:00
3bef639cc3 Version v0.3.43 - -m Remove unnecessary calculate_checksum() calls during encryption - use filename checksum directly 2025-12-27 11:56:28 -05:00
81eded2995 Version v0.3.42 - -m Suppress miniz warnings in archive.c header include 2025-12-27 11:51:10 -05:00
e126e30889 Version v0.3.41 - -m Suppress miniz library warnings, auto-select pad when only one available 2025-12-27 11:49:29 -05:00
6fe12e0c1c Version v0.3.40 - -m Add directory encryption (TAR+GZIP+OTP), integrate ranger for directory selection, add microtar/miniz libraries, remove binary state file backward compatibility - enforce text format only 2025-12-27 11:45:31 -05:00
89aa3baff6 Version v0.3.39 - . 2025-12-25 08:25:18 -05:00
39e818dd51 Version v0.3.38 - Implement ChaCha20 nonce extension to support pads larger than 256GB 2025-12-24 10:00:32 -05:00
977da58a3b Version v0.3.37 - Implement ChaCha20 nonce extension to support pads larger than 256GB 2025-12-24 10:00:27 -05:00
2c311a9a61 Version v0.3.36 - "." 2025-12-21 09:18:39 -04:00
b969590625 Version v0.3.35 - Convert to decimal units (1000-based) to match system tools, add posix_fallocate for guaranteed space allocation, use f_bavail for accurate space reporting, add drive info to Pad Management header 2025-12-20 10:02:15 -04:00
cf52274c2c Version v0.3.34 - Fixed usb space reporting 2025-12-20 09:25:38 -04:00
f3599fef37 Version v0.3.33 - Update readme.md some more 2025-12-18 10:20:36 -04:00
21 changed files with 2197 additions and 306 deletions

7
.gitignore vendored
View File

@@ -24,3 +24,10 @@ test_truerng
# Temporary files
*.pad
*.state
# Downloaded dependencies (source)
miniz/
microtar/
# Test directories
test_dir/

View File

@@ -1,25 +1,40 @@
CC = gcc
CFLAGS = -Wall -Wextra -std=c99 -Isrc
CFLAGS = -Wall -Wextra -std=c99 -Isrc -Iminiz -Imicrotar/src
CFLAGS_MINIZ = -Wall -Wextra -std=c99 -D_POSIX_C_SOURCE=200112L -Isrc -Iminiz -Imicrotar/src -Wno-unused-function -Wno-implicit-function-declaration
LIBS = -lm
LIBS_STATIC = -static -lm
ARCH = $(shell uname -m)
TARGET = build/otp-$(ARCH)
SOURCES = $(wildcard src/*.c)
MINIZ_SOURCES = $(wildcard miniz/*.c)
MICROTAR_SOURCES = $(wildcard microtar/src/*.c)
OBJS = $(SOURCES:.c=.o)
MINIZ_OBJS = $(MINIZ_SOURCES:.c=.o)
MICROTAR_OBJS = $(MICROTAR_SOURCES:.c=.o)
ALL_OBJS = $(OBJS) $(MINIZ_OBJS) $(MICROTAR_OBJS)
# Default build target
$(TARGET): $(OBJS)
$(TARGET): $(ALL_OBJS)
@mkdir -p build
$(CC) $(CFLAGS) -o $(TARGET) $(OBJS) $(LIBS)
@rm -f $(OBJS)
$(CC) $(CFLAGS) -o $(TARGET) $(ALL_OBJS) $(LIBS)
@rm -f $(ALL_OBJS)
# Static linking target
static: $(OBJS)
static: $(ALL_OBJS)
@mkdir -p build
$(CC) $(CFLAGS) -o $(TARGET) $(OBJS) $(LIBS_STATIC)
@rm -f $(OBJS)
$(CC) $(CFLAGS) -o $(TARGET) $(ALL_OBJS) $(LIBS_STATIC)
@rm -f $(ALL_OBJS)
%.o: %.c
# Compile main source files with full warnings
src/%.o: src/%.c
$(CC) $(CFLAGS) -c $< -o $@
# Compile miniz library files with reduced warnings
miniz/%.o: miniz/%.c
$(CC) $(CFLAGS_MINIZ) -c $< -o $@
# Compile microtar library files normally
microtar/src/%.o: microtar/src/%.c
$(CC) $(CFLAGS) -c $< -o $@
clean:

102
README.md
View File

@@ -2,7 +2,7 @@
## Introduction
A secure one-time pad (OTP) cipher implementation in C.
A secure one-time pad (OTP) cipher implementation in C99.
## Why One-Time Pads
@@ -43,6 +43,7 @@ One-time pads can be trivially encrypted and decrypted using pencil and paper, m
## Features
- **Perfect Security**: Implements true one-time pad encryption with information-theoretic security
- **Traffic Analysis Resistance**: Exponential bucketing with ISO/IEC 9797-1 Method 2 (Padmé) padding hides message lengths
- **Text & File Encryption**: Supports both inline text and file encryption
- **Multiple Output Formats**: Binary (.otp) and ASCII armored (.otp.asc) file formats
- **Hardware RNG Support**: Direct entropy collection from TrueRNG USB devices with automatic detection
@@ -58,43 +59,40 @@ One-time pads can be trivially encrypted and decrypted using pencil and paper, m
### Download Pre-Built Binaries
**[Download Current Linux x86](https://git.laantungir.net/laantungir/otp/releases/download/v0.3.31/otp-v0.3.31-linux-x86_64)**
**[Download Current Linux x86](https://git.laantungir.net/laantungir/otp/releases/download/v0.3.49/otp-v0.3.49-linux-x86_64)**
**[Download Current Raspberry Pi 64](https://git.laantungir.net/laantungir/otp/releases/download/v0.3.31/otp-v0.3.31-linux-arm64)**
**[Download Current Raspberry Pi 64](https://git.laantungir.net/laantungir/otp/releases/download/v0.3.49/otp-v0.3.49-linux-arm64)**
After downloading:
```bash
# Make executable and run
chmod +x otp-v0.3.31-linux-x86_64
./otp-v0.3.31-linux-x86_64
```
# Rename for convenience, then make executable
mv otp-v0.3.49-linux-x86_64 otp
chmod +x otp
# Run it
./otp
```
### First Steps
1. **Generate your first pad:**
```bash
./otp-v0.3.31-linux-x86_64 generate 1GB
./otp generate 1GB
```
2. **Encrypt a message:**
```bash
./otp-v0.3.31-linux-x86_64 encrypt
./otp encrypt
# Follow the interactive prompts
```
3. **Decrypt a message:**
```bash
./otp-v0.3.31-linux-x86_64 decrypt
./otp decrypt
# Paste the encrypted message
```
## Building from Source
### Prerequisites
@@ -121,28 +119,38 @@ After building, run with:
## Usage
### Interactive Mode
```bash
# If you downloaded the binary:
./otp-v0.3.31-linux-x86_64
The OTP Cipher operates in two modes:
# If you built from source:
./build/otp-x86_64
**Interactive Mode**: Run without arguments to access a menu-driven interface. Best for exploring features, managing pads, and performing operations step-by-step with prompts and guidance.
**Command Line Mode**: Provide arguments to execute specific operations directly. Ideal for scripting, automation, and quick one-off tasks.
### Interactive Mode
Launch the menu-driven interface:
```bash
./otp
```
Navigate through menus to generate pads, encrypt/decrypt messages, manage pads, and configure settings.
### Command Line Mode
Execute operations directly with arguments:
```bash
# Generate a new pad
./otp-v0.3.31-linux-x86_64 generate 1GB
./otp generate 1GB
# Encrypt text (interactive input)
./otp-v0.3.31-linux-x86_64 encrypt <pad_hash_or_prefix>
# Encrypt text (will prompt for input)
./otp encrypt <pad_hash_or_prefix>
# Decrypt message (interactive input)
./otp-v0.3.31-linux-x86_64 decrypt <pad_hash_or_prefix>
# Decrypt message (will prompt for input)
./otp decrypt <pad_hash_or_prefix>
# List available pads
./otp-v0.3.31-linux-x86_64 list
./otp list
```
## Version System
@@ -182,8 +190,23 @@ git tag v1.0.0 # Next build: v1.0.1
- Custom 256-bit XOR checksum for pad identification (encrypted with pad data)
- Read-only pad files to prevent accidental modification
- State tracking to prevent pad reuse
- **Message Length Hiding**: Exponential bucketing (256B, 512B, 1KB, 2KB, 4KB...) prevents traffic analysis
- **ISO/IEC 9797-1 Method 2 Padding**: Standard-compliant Padmé padding with 0x80 marker
- **Zero external crypto dependencies** - completely self-contained implementation
### Message Padding
All encrypted messages and files are automatically padded using exponential bucketing to resist traffic analysis attacks:
- **Minimum size**: 256 bytes
- **Bucket sizes**: 256B → 512B → 1KB → 2KB → 4KB → 8KB → ...
- **Padding method**: ISO/IEC 9797-1 Method 2 (Padmé padding)
- Appends `0x80` byte after message
- Fills remaining space with `0x00` bytes
- Unambiguous padding removal during decryption
**Example**: A 10-byte message is padded to 256 bytes, while a 300-byte message is padded to 512 bytes. This provides strong protection for small messages where length leakage matters most, with logarithmic overhead for larger messages.
## Project Structure
```
@@ -198,6 +221,7 @@ otp/
│ ├── ui.c # Interactive user interface and menu system
│ ├── state.c # Global state management (pads directory, preferences)
│ ├── crypto.c # Core cryptographic operations (XOR, base64)
│ ├── padding.c # Message padding (exponential bucketing, Padmé padding)
│ ├── pads.c # Pad management and file operations
│ ├── entropy.c # Entropy collection from various sources
│ ├── trng.c # Hardware RNG device detection and collection
@@ -210,6 +234,7 @@ otp/
├── pads/ # OTP pad storage directory (created at runtime)
├── files/ # Encrypted file storage (created at runtime)
└── tests/ # Test scripts and utilities
└── test_padding.sh # Padding implementation tests
```
## Architecture
@@ -220,6 +245,7 @@ The OTP cipher uses a modular architecture with clean separation of concerns:
- **ui.c**: Interactive user interface, menus, and terminal management
- **state.c**: Global state management (pads directory, terminal dimensions, preferences)
- **crypto.c**: Core cryptographic operations (XOR encryption, base64 encoding)
- **padding.c**: Message padding implementation (exponential bucketing, ISO/IEC 9797-1 Method 2)
- **pads.c**: Pad file management, checksums, and state tracking
- **entropy.c**: Entropy collection from keyboard, dice, files, and hardware RNG
- **trng.c**: Hardware RNG device detection and entropy collection from USB devices
@@ -424,6 +450,28 @@ No. ChkSum (first 16 chars) Size Used % Used
# Select "S" for show pad info, enter checksum or prefix
```
## Important Notes
### Size Units: Decimal (SI) vs Binary (IEC)
**This program uses decimal (SI) units for all size specifications**, matching the behavior of most system tools like `ls -lh`, `df -h`, and file managers:
- **1 KB** = 1,000 bytes (not 1,024)
- **1 MB** = 1,000,000 bytes (not 1,048,576)
- **1 GB** = 1,000,000,000 bytes (not 1,073,741,824)
- **1 TB** = 1,000,000,000,000 bytes (not 1,099,511,627,776)
**Why decimal units?**
- Consistency with system tools (`ls`, `df`, file managers)
- Matches storage device marketing (a "1TB" USB drive has ~1,000,000,000,000 bytes)
- Avoids confusion when comparing sizes across different tools
- Industry standard for storage devices and file systems
**Example:** When you request a 100GB pad, the program creates exactly 100,000,000,000 bytes, which will display as "100GB" in `ls -lh` and your file manager.
**Note:** Some technical tools may use binary units (GiB, MiB) where 1 GiB = 1,024³ bytes. This program intentionally uses decimal units for user-friendliness and consistency with common tools.
## License
This project includes automatic versioning system based on the Generic Automatic Version Increment System.

View File

@@ -169,9 +169,12 @@ update_source_version() {
After downloading:
\`\`\`bash
# Make executable and run
chmod +x otp-${NEW_VERSION}-linux-x86_64
./otp-${NEW_VERSION}-linux-x86_64
# Rename for convenience, then make executable
mv otp-${NEW_VERSION}-linux-x86_64 otp
chmod +x otp
# Run it
./otp
\`\`\`"
# Use awk to replace the section between "### Download Pre-Built Binaries" and "### First Steps"
@@ -343,10 +346,29 @@ clean_project() {
}
install_project() {
print_status "Installing OTP project..."
print_status "Building project before installation..."
# Build the project first (without version increment for install)
print_status "Cleaning previous build..."
make clean
print_status "Building OTP project for x86_64..."
make CC=gcc ARCH=x86_64
if [ $? -ne 0 ]; then
print_error "Build failed"
return 1
fi
print_success "Build completed successfully"
# Clean up object files after successful build
print_status "Cleaning up object files..."
rm -f src/*.o miniz/*.o microtar/src/*.o
# Now install
print_status "Installing OTP project to system..."
make install
if [ $? -eq 0 ]; then
print_success "Installation completed"
print_success "Installation completed - binary installed to /usr/local/bin/otp"
else
print_error "Installation failed"
return 1

BIN
dir_nav Executable file

Binary file not shown.

1
otp
View File

@@ -1 +0,0 @@
./build/otp-x86_64

504
src/archive.c Normal file
View File

@@ -0,0 +1,504 @@
#define _POSIX_C_SOURCE 200809L
#define _DEFAULT_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <unistd.h>
#include <sys/stat.h>
#include <dirent.h>
#include <time.h>
#include "main.h"
#include "microtar.h"
// Suppress warnings from miniz header
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-function"
#include "miniz.h"
#pragma GCC diagnostic pop
////////////////////////////////////////////////////////////////////////////////
// DIRECTORY ARCHIVING FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Helper function to recursively add directory contents to TAR archive
static int add_directory_to_tar(mtar_t* tar, const char* base_path, const char* relative_path) {
DIR* dir = opendir(base_path);
if (!dir) {
printf("Error: Cannot open directory '%s'\n", base_path);
return 1;
}
struct dirent* entry;
while ((entry = readdir(dir)) != NULL) {
// Skip . and ..
if (strcmp(entry->d_name, ".") == 0 || strcmp(entry->d_name, "..") == 0) {
continue;
}
// Build full path
char full_path[2048];
snprintf(full_path, sizeof(full_path), "%s/%s", base_path, entry->d_name);
// Build relative path for TAR
char tar_path[2048];
if (strlen(relative_path) > 0) {
snprintf(tar_path, sizeof(tar_path), "%s/%s", relative_path, entry->d_name);
} else {
snprintf(tar_path, sizeof(tar_path), "%s", entry->d_name);
}
struct stat st;
if (stat(full_path, &st) != 0) {
printf("Warning: Cannot stat '%s', skipping\n", full_path);
continue;
}
if (S_ISDIR(st.st_mode)) {
// Recursively add subdirectory
if (add_directory_to_tar(tar, full_path, tar_path) != 0) {
closedir(dir);
return 1;
}
} else if (S_ISREG(st.st_mode)) {
// Add regular file
FILE* fp = fopen(full_path, "rb");
if (!fp) {
printf("Warning: Cannot open '%s', skipping\n", full_path);
continue;
}
// Get file size
fseek(fp, 0, SEEK_END);
size_t file_size = ftell(fp);
fseek(fp, 0, SEEK_SET);
// Read file data
unsigned char* file_data = malloc(file_size);
if (!file_data) {
printf("Error: Memory allocation failed for '%s'\n", full_path);
fclose(fp);
closedir(dir);
return 1;
}
size_t bytes_read = fread(file_data, 1, file_size, fp);
fclose(fp);
if (bytes_read != file_size) {
printf("Warning: Could not read entire file '%s', skipping\n", full_path);
free(file_data);
continue;
}
// Write to TAR
if (mtar_write_file_header(tar, tar_path, file_size) != MTAR_ESUCCESS) {
printf("Error: Failed to write TAR header for '%s'\n", tar_path);
free(file_data);
closedir(dir);
return 1;
}
if (mtar_write_data(tar, file_data, file_size) != MTAR_ESUCCESS) {
printf("Error: Failed to write TAR data for '%s'\n", tar_path);
free(file_data);
closedir(dir);
return 1;
}
free(file_data);
}
}
closedir(dir);
return 0;
}
// Create TAR archive from directory
int create_tar_archive(const char* dir_path, const char* tar_output_path) {
mtar_t tar;
if (mtar_open(&tar, tar_output_path, "w") != MTAR_ESUCCESS) {
printf("Error: Cannot create TAR file '%s'\n", tar_output_path);
return 1;
}
// Get directory name for relative paths
char dir_name[512];
const char* last_slash = strrchr(dir_path, '/');
if (last_slash) {
strncpy(dir_name, last_slash + 1, sizeof(dir_name) - 1);
} else {
strncpy(dir_name, dir_path, sizeof(dir_name) - 1);
}
dir_name[sizeof(dir_name) - 1] = '\0';
// Add directory contents to TAR
int result = add_directory_to_tar(&tar, dir_path, dir_name);
// Finalize and close TAR
mtar_finalize(&tar);
mtar_close(&tar);
return result;
}
// Extract TAR archive to directory
int extract_tar_archive(const char* tar_path, const char* output_dir) {
mtar_t tar;
mtar_header_t header;
if (mtar_open(&tar, tar_path, "r") != MTAR_ESUCCESS) {
printf("Error: Cannot open TAR file '%s'\n", tar_path);
return 1;
}
// Create output directory if it doesn't exist
mkdir(output_dir, 0755);
// Extract each file
while (mtar_read_header(&tar, &header) == MTAR_ESUCCESS) {
char output_path[2048];
snprintf(output_path, sizeof(output_path), "%s/%s", output_dir, header.name);
// Create parent directories
char* last_slash = strrchr(output_path, '/');
if (last_slash) {
char parent_dir[2048];
strncpy(parent_dir, output_path, last_slash - output_path);
parent_dir[last_slash - output_path] = '\0';
// Create directories recursively
char* p = parent_dir;
while (*p) {
if (*p == '/') {
*p = '\0';
mkdir(parent_dir, 0755);
*p = '/';
}
p++;
}
mkdir(parent_dir, 0755);
}
// Extract file data
unsigned char* data = malloc(header.size);
if (!data) {
printf("Error: Memory allocation failed\n");
mtar_close(&tar);
return 1;
}
if (mtar_read_data(&tar, data, header.size) != MTAR_ESUCCESS) {
printf("Error: Failed to read data for '%s'\n", header.name);
free(data);
mtar_close(&tar);
return 1;
}
// Write to file
FILE* fp = fopen(output_path, "wb");
if (!fp) {
printf("Error: Cannot create file '%s'\n", output_path);
free(data);
mtar_close(&tar);
return 1;
}
fwrite(data, 1, header.size, fp);
fclose(fp);
free(data);
mtar_next(&tar);
}
mtar_close(&tar);
return 0;
}
////////////////////////////////////////////////////////////////////////////////
// COMPRESSION FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Compress file with gzip (miniz)
int compress_file_gzip(const char* input_path, const char* output_path) {
// Read input file
FILE* in = fopen(input_path, "rb");
if (!in) {
printf("Error: Cannot open input file '%s'\n", input_path);
return 1;
}
fseek(in, 0, SEEK_END);
size_t input_size = ftell(in);
fseek(in, 0, SEEK_SET);
unsigned char* input_data = malloc(input_size);
if (!input_data) {
printf("Error: Memory allocation failed\n");
fclose(in);
return 1;
}
size_t bytes_read = fread(input_data, 1, input_size, in);
fclose(in);
if (bytes_read != input_size) {
printf("Error: Failed to read input file\n");
free(input_data);
return 1;
}
// Compress with miniz
mz_ulong compressed_size = compressBound(input_size);
unsigned char* compressed_data = malloc(compressed_size);
if (!compressed_data) {
printf("Error: Memory allocation failed\n");
free(input_data);
return 1;
}
int result = compress2(compressed_data, &compressed_size,
input_data, input_size,
MZ_BEST_COMPRESSION);
free(input_data);
if (result != MZ_OK) {
printf("Error: Compression failed (error code: %d)\n", result);
free(compressed_data);
return 1;
}
// Write compressed data
FILE* out = fopen(output_path, "wb");
if (!out) {
printf("Error: Cannot create output file '%s'\n", output_path);
free(compressed_data);
return 1;
}
fwrite(compressed_data, 1, compressed_size, out);
fclose(out);
free(compressed_data);
return 0;
}
// Decompress gzip file (miniz)
int decompress_file_gzip(const char* input_path, const char* output_path) {
// Read compressed file
FILE* in = fopen(input_path, "rb");
if (!in) {
printf("Error: Cannot open compressed file '%s'\n", input_path);
return 1;
}
fseek(in, 0, SEEK_END);
size_t compressed_size = ftell(in);
fseek(in, 0, SEEK_SET);
unsigned char* compressed_data = malloc(compressed_size);
if (!compressed_data) {
printf("Error: Memory allocation failed\n");
fclose(in);
return 1;
}
size_t bytes_read = fread(compressed_data, 1, compressed_size, in);
fclose(in);
if (bytes_read != compressed_size) {
printf("Error: Failed to read compressed file\n");
free(compressed_data);
return 1;
}
// Estimate decompressed size (try multiple times if needed)
mz_ulong output_size = compressed_size * 10;
unsigned char* output_data = NULL;
int result;
for (int attempt = 0; attempt < 3; attempt++) {
output_data = realloc(output_data, output_size);
if (!output_data) {
printf("Error: Memory allocation failed\n");
free(compressed_data);
return 1;
}
mz_ulong temp_size = output_size;
result = uncompress(output_data, &temp_size, compressed_data, compressed_size);
if (result == MZ_OK) {
output_size = temp_size;
break;
} else if (result == MZ_BUF_ERROR) {
// Buffer too small, try larger
output_size *= 2;
} else {
printf("Error: Decompression failed (error code: %d)\n", result);
free(compressed_data);
free(output_data);
return 1;
}
}
free(compressed_data);
if (result != MZ_OK) {
printf("Error: Decompression failed after multiple attempts\n");
free(output_data);
return 1;
}
// Write decompressed data
FILE* out = fopen(output_path, "wb");
if (!out) {
printf("Error: Cannot create output file '%s'\n", output_path);
free(output_data);
return 1;
}
fwrite(output_data, 1, output_size, out);
fclose(out);
free(output_data);
return 0;
}
////////////////////////////////////////////////////////////////////////////////
// HIGH-LEVEL DIRECTORY ENCRYPTION/DECRYPTION
////////////////////////////////////////////////////////////////////////////////
// Encrypt directory: TAR → GZIP → Encrypt
int encrypt_directory(const char* dir_path, const char* pad_identifier, const char* output_file) {
char temp_tar[512];
char temp_gz[512];
int result = 0;
// Generate temporary file paths
snprintf(temp_tar, sizeof(temp_tar), "/tmp/otp_tar_%d.tar", getpid());
snprintf(temp_gz, sizeof(temp_gz), "/tmp/otp_gz_%d.tar.gz", getpid());
printf("Creating TAR archive...\n");
if (create_tar_archive(dir_path, temp_tar) != 0) {
printf("Error: Failed to create TAR archive\n");
return 1;
}
printf("Compressing archive...\n");
if (compress_file_gzip(temp_tar, temp_gz) != 0) {
printf("Error: Failed to compress archive\n");
unlink(temp_tar);
return 1;
}
printf("Encrypting compressed archive...\n");
result = encrypt_file(pad_identifier, temp_gz, output_file, 0);
// Cleanup temporary files
unlink(temp_tar);
unlink(temp_gz);
if (result == 0) {
printf("Directory encrypted successfully: %s\n", output_file);
}
return result;
}
// Detect if file is a compressed TAR archive
int is_compressed_tar_archive(const char* file_path) {
FILE* fp = fopen(file_path, "rb");
if (!fp) {
return 0;
}
unsigned char magic[512];
size_t bytes_read = fread(magic, 1, sizeof(magic), fp);
fclose(fp);
if (bytes_read < 2) {
return 0;
}
// Check for GZIP magic bytes (0x1f 0x8b)
if (magic[0] == 0x1f && magic[1] == 0x8b) {
return 1;
}
// Check for TAR magic ("ustar" at offset 257)
if (bytes_read >= 262 && memcmp(magic + 257, "ustar", 5) == 0) {
return 1;
}
return 0;
}
// Decrypt and extract directory: Decrypt → GUNZIP → Extract TAR
int decrypt_and_extract_directory(const char* encrypted_file, const char* output_dir) {
char temp_decrypted[512];
char temp_tar[512];
int result = 0;
// Generate temporary file paths
snprintf(temp_decrypted, sizeof(temp_decrypted), "/tmp/otp_decrypt_%d", getpid());
snprintf(temp_tar, sizeof(temp_tar), "/tmp/otp_tar_%d.tar", getpid());
printf("Decrypting file...\n");
if (decrypt_file(encrypted_file, temp_decrypted) != 0) {
printf("Error: Failed to decrypt file\n");
return 1;
}
// Check if it's compressed
FILE* fp = fopen(temp_decrypted, "rb");
if (!fp) {
printf("Error: Cannot open decrypted file\n");
unlink(temp_decrypted);
return 1;
}
unsigned char magic[2];
fread(magic, 1, 2, fp);
fclose(fp);
if (magic[0] == 0x1f && magic[1] == 0x8b) {
// GZIP compressed
printf("Decompressing archive...\n");
if (decompress_file_gzip(temp_decrypted, temp_tar) != 0) {
printf("Error: Failed to decompress archive\n");
unlink(temp_decrypted);
return 1;
}
unlink(temp_decrypted);
} else {
// Not compressed, assume it's already TAR
printf("File is not compressed, using as TAR directly...\n");
if (rename(temp_decrypted, temp_tar) != 0) {
printf("Error: Failed to rename decrypted file to TAR file\n");
unlink(temp_decrypted);
return 1;
}
}
// Verify TAR file exists before extraction
if (access(temp_tar, F_OK) != 0) {
printf("Error: TAR file does not exist at '%s'\n", temp_tar);
return 1;
}
printf("Extracting archive...\n");
result = extract_tar_archive(temp_tar, output_dir);
// Cleanup
unlink(temp_tar);
if (result == 0) {
printf("Directory extracted successfully to: %s\n", output_dir);
}
return result;
}

View File

@@ -297,7 +297,6 @@ int encrypt_text(const char* pad_identifier, const char* input_text) {
}
char text_buffer[MAX_INPUT_SIZE];
char chksum_hex[MAX_HASH_LENGTH];
uint64_t current_offset;
char pad_path[MAX_HASH_LENGTH + 20];
@@ -327,12 +326,8 @@ int encrypt_text(const char* pad_identifier, const char* input_text) {
}
}
// Calculate XOR checksum of pad file
if (calculate_checksum(pad_path, chksum_hex) != 0) {
printf("Error: Cannot calculate pad checksum\n");
free(pad_chksum);
return 1;
}
// Use pad_chksum directly - it's already the checksum from the filename
// No need to recalculate by reading the entire pad file
// Get input text - either from parameter or user input
if (input_text != NULL) {
@@ -406,18 +401,40 @@ int encrypt_text(const char* pad_identifier, const char* input_text) {
return 1;
}
// Check if we have enough pad space
struct stat pad_stat;
if (stat(pad_path, &pad_stat) != 0) {
printf("Error: Cannot get pad file size\n");
// Calculate chunk size for padding (exponential bucketing)
size_t chunk_size = calculate_chunk_size(input_len);
// Allocate buffer for padded message
unsigned char* padded_buffer = malloc(chunk_size);
if (!padded_buffer) {
printf("Error: Memory allocation failed\n");
free(pad_chksum);
return 1;
}
if (current_offset + input_len > (uint64_t)pad_stat.st_size) {
// Copy message to buffer and apply padding
memcpy(padded_buffer, text_buffer, input_len);
if (apply_padme_padding(padded_buffer, input_len, chunk_size) != 0) {
printf("Error: Failed to apply padding\n");
free(padded_buffer);
free(pad_chksum);
return 1;
}
// Check if we have enough pad space (now using chunk_size instead of input_len)
struct stat pad_stat;
if (stat(pad_path, &pad_stat) != 0) {
printf("Error: Cannot get pad file size\n");
free(padded_buffer);
free(pad_chksum);
return 1;
}
if (current_offset + chunk_size > (uint64_t)pad_stat.st_size) {
printf("Error: Not enough pad space remaining\n");
printf("Need: %lu bytes, Available: %lu bytes\n",
input_len, (uint64_t)pad_stat.st_size - current_offset);
chunk_size, (uint64_t)pad_stat.st_size - current_offset);
free(padded_buffer);
free(pad_chksum);
return 1;
}
@@ -437,37 +454,40 @@ int encrypt_text(const char* pad_identifier, const char* input_text) {
return 1;
}
unsigned char* pad_data = malloc(input_len);
if (fread(pad_data, 1, input_len, pad_file) != input_len) {
unsigned char* pad_data = malloc(chunk_size);
if (fread(pad_data, 1, chunk_size, pad_file) != chunk_size) {
printf("Error: Cannot read pad data\n");
free(pad_data);
fclose(pad_file);
free(padded_buffer);
free(pad_chksum);
return 1;
}
fclose(pad_file);
// Use universal XOR operation for encryption
unsigned char* ciphertext = malloc(input_len);
if (universal_xor_operation((const unsigned char*)text_buffer, input_len, pad_data, ciphertext) != 0) {
// Use universal XOR operation for encryption (now with padded data)
unsigned char* ciphertext = malloc(chunk_size);
if (universal_xor_operation(padded_buffer, chunk_size, pad_data, ciphertext) != 0) {
printf("Error: Encryption operation failed\n");
free(pad_data);
free(ciphertext);
free(padded_buffer);
free(pad_chksum);
return 1;
}
// Update state offset
if (write_state_offset(pad_chksum, current_offset + input_len) != 0) {
// Update state offset (now using chunk_size)
if (write_state_offset(pad_chksum, current_offset + chunk_size) != 0) {
printf("Warning: Failed to update state file\n");
}
// Use universal ASCII armor generator
// Use universal ASCII armor generator (now with chunk_size)
char* ascii_output;
if (generate_ascii_armor(chksum_hex, current_offset, ciphertext, input_len, &ascii_output) != 0) {
if (generate_ascii_armor(pad_chksum, current_offset, ciphertext, chunk_size, &ascii_output) != 0) {
printf("Error: Failed to generate ASCII armor\n");
free(pad_data);
free(ciphertext);
free(padded_buffer);
free(pad_chksum);
return 1;
}
@@ -484,6 +504,7 @@ int encrypt_text(const char* pad_identifier, const char* input_text) {
// Cleanup
free(pad_data);
free(ciphertext);
free(padded_buffer);
free(ascii_output);
free(pad_chksum);
@@ -592,36 +613,14 @@ int universal_decrypt(const char* input_data, const char* output_target, decrypt
return 1;
}
// Validate pad integrity
int integrity_result = validate_pad_integrity(pad_path, stored_chksum);
if (integrity_result == 3) {
if (mode == DECRYPT_MODE_SILENT) {
fprintf(stderr, "Error: Pad integrity check failed!\n");
return 1;
} else if (mode == DECRYPT_MODE_INTERACTIVE) {
printf("Warning: Pad integrity check failed!\n");
printf("Expected: %s\n", stored_chksum);
printf("Continue anyway? (y/N): ");
fflush(stdout);
// Pad integrity validation disabled for performance
// The checksum is already verified by matching the filename
// If you need to verify pad integrity, the pad file would need to be read entirely
// which is very slow for large pads (multi-GB files)
char response[10];
if (fgets(response, sizeof(response), stdin) == NULL ||
(response[0] != 'y' && response[0] != 'Y')) {
printf("Decryption aborted.\n");
return 1;
}
}
} else if (integrity_result != 0) {
if (mode == DECRYPT_MODE_SILENT) {
fprintf(stderr, "Error: Cannot verify pad integrity\n");
} else {
printf("Error: Cannot verify pad integrity\n");
}
return 1;
} else {
// Skip integrity check - trust the filename checksum
if (mode == DECRYPT_MODE_INTERACTIVE || mode == DECRYPT_MODE_FILE_TO_TEXT) {
printf("Pad integrity: VERIFIED\n");
}
printf("Using pad: %s\n", stored_chksum);
}
// Decode base64 ciphertext
@@ -659,6 +658,22 @@ int universal_decrypt(const char* input_data, const char* output_target, decrypt
return 1;
}
// Remove padding to get actual message
size_t actual_msg_len;
if (remove_padme_padding(ciphertext, ciphertext_len, &actual_msg_len) != 0) {
if (mode == DECRYPT_MODE_SILENT) {
fprintf(stderr, "Error: Invalid padding - message may be corrupted\n");
} else {
printf("Error: Invalid padding - message may be corrupted\n");
}
free(ciphertext);
free(pad_data);
return 1;
}
// Update ciphertext_len to actual message length
ciphertext_len = actual_msg_len;
// Output based on mode
if (mode == DECRYPT_MODE_FILE_TO_FILE) {
// Write to output file
@@ -746,7 +761,6 @@ int encrypt_file(const char* pad_identifier, const char* input_file, const char*
return 1;
}
char chksum_hex[MAX_HASH_LENGTH];
uint64_t current_offset;
char pad_path[MAX_HASH_LENGTH + 20];
@@ -768,6 +782,9 @@ int encrypt_file(const char* pad_identifier, const char* input_file, const char*
return 1;
}
// Calculate chunk size for padding (exponential bucketing)
size_t chunk_size = calculate_chunk_size(file_size);
// Check if pad file exists
if (access(pad_path, R_OK) != 0) {
printf("Error: Pad file %s not found\n", pad_path);
@@ -791,12 +808,8 @@ int encrypt_file(const char* pad_identifier, const char* input_file, const char*
}
}
// Calculate XOR checksum of pad file
if (calculate_checksum(pad_path, chksum_hex) != 0) {
printf("Error: Cannot calculate pad checksum\n");
free(pad_chksum);
return 1;
}
// Use pad_chksum directly - it's already the checksum from the filename
// No need to recalculate by reading the entire pad file
// Check if we have enough pad space
struct stat pad_stat;
@@ -806,10 +819,10 @@ int encrypt_file(const char* pad_identifier, const char* input_file, const char*
return 1;
}
if (current_offset + file_size > (uint64_t)pad_stat.st_size) {
if (current_offset + chunk_size > (uint64_t)pad_stat.st_size) {
printf("Error: Not enough pad space remaining\n");
printf("Need: %lu bytes, Available: %lu bytes\n",
file_size, (uint64_t)pad_stat.st_size - current_offset);
printf("Need: %lu bytes (file: %lu + padding), Available: %lu bytes\n",
chunk_size, file_size, (uint64_t)pad_stat.st_size - current_offset);
free(pad_chksum);
return 1;
}
@@ -854,65 +867,92 @@ int encrypt_file(const char* pad_identifier, const char* input_file, const char*
return 1;
}
// Read and encrypt file
unsigned char buffer[64 * 1024];
unsigned char pad_buffer[64 * 1024];
unsigned char* encrypted_data = malloc(file_size);
uint64_t bytes_processed = 0;
// Allocate buffer for padded file data
unsigned char* file_data = malloc(file_size);
if (!file_data) {
printf("Error: Memory allocation failed\n");
fclose(input_fp);
fclose(pad_file);
free(pad_chksum);
return 1;
}
printf("Encrypting %s...\n", input_file);
while (bytes_processed < file_size) {
uint64_t chunk_size = sizeof(buffer);
if (file_size - bytes_processed < chunk_size) {
chunk_size = file_size - bytes_processed;
// Read entire file
if (fread(file_data, 1, file_size, input_fp) != file_size) {
printf("Error: Cannot read input file\n");
free(file_data);
fclose(input_fp);
fclose(pad_file);
free(pad_chksum);
return 1;
}
fclose(input_fp);
// Allocate buffer for padded data
unsigned char* padded_data = malloc(chunk_size);
if (!padded_data) {
printf("Error: Memory allocation failed\n");
free(file_data);
fclose(pad_file);
free(pad_chksum);
return 1;
}
// Read file data
if (fread(buffer, 1, chunk_size, input_fp) != chunk_size) {
printf("Error: Cannot read input file data\n");
free(encrypted_data);
fclose(input_fp);
// Copy file data and apply padding
memcpy(padded_data, file_data, file_size);
free(file_data);
if (apply_padme_padding(padded_data, file_size, chunk_size) != 0) {
printf("Error: Failed to apply padding\n");
free(padded_data);
fclose(pad_file);
free(pad_chksum);
return 1;
}
// Read pad data
if (fread(pad_buffer, 1, chunk_size, pad_file) != chunk_size) {
unsigned char* pad_data = malloc(chunk_size);
if (!pad_data) {
printf("Error: Memory allocation failed\n");
free(padded_data);
fclose(pad_file);
free(pad_chksum);
return 1;
}
if (fread(pad_data, 1, chunk_size, pad_file) != chunk_size) {
printf("Error: Cannot read pad data\n");
free(encrypted_data);
fclose(input_fp);
free(padded_data);
free(pad_data);
fclose(pad_file);
free(pad_chksum);
return 1;
}
fclose(pad_file);
// Use universal XOR operation for encryption
if (universal_xor_operation(buffer, chunk_size, pad_buffer, &encrypted_data[bytes_processed]) != 0) {
// Encrypt padded data
unsigned char* encrypted_data = malloc(chunk_size);
if (!encrypted_data) {
printf("Error: Memory allocation failed\n");
free(padded_data);
free(pad_data);
free(pad_chksum);
return 1;
}
if (universal_xor_operation(padded_data, chunk_size, pad_data, encrypted_data) != 0) {
printf("Error: Encryption operation failed\n");
free(padded_data);
free(pad_data);
free(encrypted_data);
fclose(input_fp);
fclose(pad_file);
free(pad_chksum);
return 1;
}
bytes_processed += chunk_size;
// Show progress for large files (> 10MB)
if (file_size > 10 * 1024 * 1024 && bytes_processed % (1024 * 1024) == 0) {
// show_progress(bytes_processed, file_size, start_time); // MOVED TO src/util.c
}
}
if (file_size > 10 * 1024 * 1024) {
// show_progress(file_size, file_size, start_time); // MOVED TO src/util.c
printf("\n");
}
fclose(input_fp);
fclose(pad_file);
free(padded_data);
free(pad_data);
// Write output file
if (ascii_armor) {
@@ -925,9 +965,9 @@ int encrypt_file(const char* pad_identifier, const char* input_file, const char*
return 1;
}
// Use universal ASCII armor generator
// Use universal ASCII armor generator (now with chunk_size)
char* ascii_output;
if (generate_ascii_armor(chksum_hex, current_offset, encrypted_data, file_size, &ascii_output) != 0) {
if (generate_ascii_armor(pad_chksum, current_offset, encrypted_data, chunk_size, &ascii_output) != 0) {
printf("Error: Failed to generate ASCII armor\n");
fclose(output_fp);
free(encrypted_data);
@@ -961,7 +1001,7 @@ int encrypt_file(const char* pad_identifier, const char* input_file, const char*
// Pad checksum: 32 bytes (binary)
unsigned char pad_chksum_bin[32];
for (int i = 0; i < 32; i++) {
sscanf(chksum_hex + i*2, "%2hhx", &pad_chksum_bin[i]);
sscanf(pad_chksum + i*2, "%2hhx", &pad_chksum_bin[i]);
}
fwrite(pad_chksum_bin, 1, 32, output_fp);
@@ -973,17 +1013,17 @@ int encrypt_file(const char* pad_identifier, const char* input_file, const char*
uint32_t file_mode = input_stat.st_mode;
fwrite(&file_mode, sizeof(uint32_t), 1, output_fp);
// File size: 8 bytes
// File size: 8 bytes (original file size, not padded)
fwrite(&file_size, sizeof(uint64_t), 1, output_fp);
// Encrypted data
fwrite(encrypted_data, 1, file_size, output_fp);
// Encrypted data (padded)
fwrite(encrypted_data, 1, chunk_size, output_fp);
fclose(output_fp);
}
// Update state offset
if (write_state_offset(pad_chksum, current_offset + file_size) != 0) {
// Update state offset (now using chunk_size)
if (write_state_offset(pad_chksum, current_offset + chunk_size) != 0) {
printf("Warning: Failed to update state file\n");
}
@@ -1044,14 +1084,14 @@ int decrypt_binary_file(FILE* input_fp, const char* output_file) {
unsigned char pad_chksum_bin[32];
uint64_t pad_offset;
uint32_t file_mode;
uint64_t file_size;
uint64_t original_file_size;
if (fread(magic, 1, 4, input_fp) != 4 ||
fread(&version, sizeof(uint16_t), 1, input_fp) != 1 ||
fread(pad_chksum_bin, 1, 32, input_fp) != 32 ||
fread(&pad_offset, sizeof(uint64_t), 1, input_fp) != 1 ||
fread(&file_mode, sizeof(uint32_t), 1, input_fp) != 1 ||
fread(&file_size, sizeof(uint64_t), 1, input_fp) != 1) {
fread(&original_file_size, sizeof(uint64_t), 1, input_fp) != 1) {
printf("Error: Cannot read binary header\n");
fclose(input_fp);
return 1;
@@ -1071,7 +1111,7 @@ int decrypt_binary_file(FILE* input_fp, const char* output_file) {
pad_chksum_hex[64] = '\0';
printf("Decrypting binary file...\n");
printf("File size: %lu bytes\n", file_size);
printf("Original file size: %lu bytes\n", original_file_size);
// Check if we have the required pad
char pad_path[MAX_HASH_LENGTH + 20];
@@ -1096,9 +1136,18 @@ int decrypt_binary_file(FILE* input_fp, const char* output_file) {
output_file = default_output;
}
// Read encrypted data
unsigned char* encrypted_data = malloc(file_size);
if (fread(encrypted_data, 1, file_size, input_fp) != file_size) {
// Calculate chunk size (encrypted data is padded)
size_t chunk_size = calculate_chunk_size(original_file_size);
// Read encrypted (padded) data
unsigned char* encrypted_data = malloc(chunk_size);
if (!encrypted_data) {
printf("Error: Memory allocation failed\n");
fclose(input_fp);
return 1;
}
if (fread(encrypted_data, 1, chunk_size, input_fp) != chunk_size) {
printf("Error: Cannot read encrypted data\n");
free(encrypted_data);
fclose(input_fp);
@@ -1121,8 +1170,15 @@ int decrypt_binary_file(FILE* input_fp, const char* output_file) {
return 1;
}
unsigned char* pad_data = malloc(file_size);
if (fread(pad_data, 1, file_size, pad_file) != file_size) {
unsigned char* pad_data = malloc(chunk_size);
if (!pad_data) {
printf("Error: Memory allocation failed\n");
free(encrypted_data);
fclose(pad_file);
return 1;
}
if (fread(pad_data, 1, chunk_size, pad_file) != chunk_size) {
printf("Error: Cannot read pad data\n");
free(encrypted_data);
free(pad_data);
@@ -1132,26 +1188,40 @@ int decrypt_binary_file(FILE* input_fp, const char* output_file) {
fclose(pad_file);
// Use universal XOR operation for decryption
if (universal_xor_operation(encrypted_data, file_size, pad_data, encrypted_data) != 0) {
if (universal_xor_operation(encrypted_data, chunk_size, pad_data, encrypted_data) != 0) {
printf("Error: Decryption operation failed\n");
free(encrypted_data);
free(pad_data);
return 1;
}
// Write decrypted file
free(pad_data);
// Remove padding to get original file
size_t actual_file_size;
if (remove_padme_padding(encrypted_data, chunk_size, &actual_file_size) != 0) {
printf("Error: Invalid padding - file may be corrupted\n");
free(encrypted_data);
return 1;
}
// Verify the actual size matches the stored original size
if (actual_file_size != original_file_size) {
printf("Warning: Decrypted size (%lu) doesn't match stored size (%lu)\n",
actual_file_size, original_file_size);
}
// Write decrypted file (using actual_file_size)
FILE* output_fp = fopen(output_file, "wb");
if (!output_fp) {
printf("Error: Cannot create output file %s\n", output_file);
free(encrypted_data);
free(pad_data);
return 1;
}
if (fwrite(encrypted_data, 1, file_size, output_fp) != file_size) {
if (fwrite(encrypted_data, 1, actual_file_size, output_fp) != actual_file_size) {
printf("Error: Cannot write decrypted data\n");
free(encrypted_data);
free(pad_data);
fclose(output_fp);
return 1;
}
@@ -1165,12 +1235,14 @@ int decrypt_binary_file(FILE* input_fp, const char* output_file) {
printf("File decrypted successfully: %s\n", output_file);
printf("Restored permissions and metadata\n");
// Only pause if output is not a temporary file (directory decryption uses /tmp/)
if (strncmp(output_file, "/tmp/", 5) != 0) {
// Pause before returning to menu to let user see the success message
print_centered_header("File Decryption Complete", 1);
}
// Cleanup
free(encrypted_data);
free(pad_data);
return 0;
}

View File

@@ -82,7 +82,7 @@ int add_entropy_direct_xor(const char* pad_chksum, const unsigned char* entropy_
if (display_progress) {
printf("Adding entropy to pad using direct XOR...\n");
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1024.0*1024.0*1024.0), pad_size);
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1000.0*1000.0*1000.0), pad_size);
printf("Entropy size: %zu bytes\n", entropy_size);
}
@@ -212,16 +212,30 @@ int add_entropy_chacha20(const char* pad_chksum, const unsigned char* entropy_da
if (display_progress) {
printf("Adding entropy to pad using Chacha20...\n");
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1024.0*1024.0*1024.0), pad_size);
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1000.0*1000.0*1000.0), pad_size);
}
// Process pad in chunks
unsigned char buffer[64 * 1024]; // 64KB chunks
unsigned char keystream[64 * 1024];
uint64_t offset = 0;
uint32_t counter = 0;
uint32_t counter_low = 0;
uint32_t counter_high = 0;
time_t start_time = time(NULL);
// Use extended counter for pads larger than 256GB
// 256GB = 2^32 blocks * 64 bytes = 274,877,906,944 bytes
int use_extended = (pad_size > 274877906944ULL);
// For extended mode, use reduced 8-byte nonce
unsigned char nonce_reduced[8];
if (use_extended) {
memcpy(nonce_reduced, nonce + 4, 8);
if (display_progress) {
printf("Using extended counter mode for large pad (>256GB)\n");
}
}
while (offset < pad_size) {
size_t chunk_size = sizeof(buffer);
if (pad_size - offset < chunk_size) {
@@ -237,7 +251,15 @@ int add_entropy_chacha20(const char* pad_chksum, const unsigned char* entropy_da
}
// Generate keystream for this chunk
if (chacha20_encrypt(key, counter, nonce, buffer, keystream, chunk_size) != 0) {
int chacha_result;
if (use_extended) {
chacha_result = chacha20_encrypt_extended(key, counter_low, counter_high,
nonce_reduced, buffer, keystream, chunk_size);
} else {
chacha_result = chacha20_encrypt(key, counter_low, nonce, buffer, keystream, chunk_size);
}
if (chacha_result != 0) {
printf("Error: Chacha20 keystream generation failed\n");
fclose(pad_file);
chmod(pad_path, S_IRUSR);
@@ -265,7 +287,16 @@ int add_entropy_chacha20(const char* pad_chksum, const unsigned char* entropy_da
}
offset += chunk_size;
counter += (chunk_size + 63) / 64; // Round up for block count
// Update counters
uint32_t blocks = (chunk_size + 63) / 64; // Round up for block count
uint32_t old_counter_low = counter_low;
counter_low += blocks;
// Check for overflow and increment high counter
if (counter_low < old_counter_low) {
counter_high++;
}
// Show progress for large pads
if (display_progress && offset % (64 * 1024 * 1024) == 0) { // Every 64MB
@@ -282,7 +313,8 @@ int add_entropy_chacha20(const char* pad_chksum, const unsigned char* entropy_da
if (display_progress) {
show_progress(pad_size, pad_size, start_time);
printf("\n✓ Entropy successfully added to pad using Chacha20\n");
printf("\n✓ Entropy successfully added to pad using Chacha20%s\n",
use_extended ? " (extended counter)" : "");
printf("✓ Pad integrity maintained\n");
printf("✓ %zu bytes of entropy distributed across entire pad\n", entropy_size);
printf("✓ Pad restored to read-only mode\n");
@@ -593,8 +625,8 @@ int add_file_entropy_streaming(const char* pad_chksum, const char* file_path, si
if (display_progress) {
printf("Adding entropy to pad using streaming direct XOR...\n");
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1024.0*1024.0*1024.0), pad_size);
printf("Entropy file: %.2f GB (%zu bytes)\n", (double)file_size / (1024.0*1024.0*1024.0), file_size);
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1000.0*1000.0*1000.0), pad_size);
printf("Entropy file: %.2f GB (%zu bytes)\n", (double)file_size / (1000.0*1000.0*1000.0), file_size);
}
// Process in chunks

View File

@@ -23,7 +23,7 @@
#include <ctype.h>
// Version - Updated automatically by build.sh
#define OTP_VERSION "v0.3.31"
#define OTP_VERSION "v0.3.49"
// Constants
#define MAX_INPUT_SIZE 4096
@@ -130,6 +130,7 @@ char* get_preferred_editor(void);
char* get_preferred_file_manager(void);
int launch_text_editor(const char* initial_content, char* result_buffer, size_t buffer_size);
int launch_file_manager(const char* start_directory, char* selected_file, size_t buffer_size);
int launch_directory_manager(const char* start_directory, char* selected_dir, size_t buffer_size);
////////////////////////////////////////////////////////////////////////////////
// CORE CRYPTOGRAPHIC OPERATIONS
@@ -238,6 +239,23 @@ int update_pad_checksum_after_entropy(const char* old_chksum, char* new_chksum);
int rename_pad_files_safely(const char* old_chksum, const char* new_chksum);
int is_pad_unused(const char* pad_chksum);
////////////////////////////////////////////////////////////////////////////////
// DIRECTORY ARCHIVING AND COMPRESSION FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Directory encryption/decryption (TAR + GZIP + OTP)
int encrypt_directory(const char* dir_path, const char* pad_identifier, const char* output_file);
int decrypt_and_extract_directory(const char* encrypted_file, const char* output_dir);
int is_compressed_tar_archive(const char* file_path);
// TAR archive operations
int create_tar_archive(const char* dir_path, const char* tar_output_path);
int extract_tar_archive(const char* tar_path, const char* output_dir);
// Compression operations
int compress_file_gzip(const char* input_path, const char* output_path);
int decompress_file_gzip(const char* input_path, const char* output_path);
////////////////////////////////////////////////////////////////////////////////
// DIRECTORY MANAGEMENT FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
@@ -249,6 +267,16 @@ const char* get_files_directory(void);
void get_default_file_path(const char* filename, char* result_path, size_t result_size);
void get_directory_display(const char* file_path, char* result, size_t result_size);
////////////////////////////////////////////////////////////////////////////////
// MESSAGE PADDING FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Exponential bucketing and ISO/IEC 9797-1 Method 2 (Padmé) padding
size_t calculate_chunk_size(size_t msg_len);
int apply_padme_padding(unsigned char* buffer, size_t msg_len, size_t chunk_size);
int remove_padme_padding(const unsigned char* buffer, size_t chunk_size, size_t* msg_len);
void format_chunk_size(size_t chunk_size, char* buffer, size_t buffer_size);
////////////////////////////////////////////////////////////////////////////////
// UTILITY FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
@@ -259,6 +287,7 @@ char* find_pad_by_prefix(const char* prefix);
int show_pad_info(const char* chksum);
void show_progress(uint64_t current, uint64_t total, time_t start_time);
void format_time_remaining(double seconds, char* buffer, size_t buffer_size);
int is_escape_input(const char* input);
////////////////////////////////////////////////////////////////////////////////
// FILE OPERATIONS
@@ -314,6 +343,7 @@ int handle_decrypt_menu(void);
int handle_pads_menu(void);
int handle_text_encrypt(void);
int handle_file_encrypt(void);
int handle_directory_encrypt(void);
int handle_verify_pad(const char* pad_chksum);
int handle_delete_pad(const char* pad_chksum);

View File

@@ -161,3 +161,45 @@ int chacha20_encrypt(const uint8_t key[32], uint32_t counter,
return 0;
}
int chacha20_encrypt_extended(const uint8_t key[32], uint32_t counter_low,
uint32_t counter_high, const uint8_t nonce[8],
const uint8_t* input, uint8_t* output, size_t length) {
uint8_t keystream[CHACHA20_BLOCK_SIZE];
uint8_t extended_nonce[12];
size_t offset = 0;
while (length > 0) {
/* Build extended 12-byte nonce: [counter_high (4 bytes)][nonce (8 bytes)] */
u32_to_bytes_le(counter_high, extended_nonce);
memcpy(extended_nonce + 4, nonce, 8);
/* Generate keystream block using extended nonce */
int ret = chacha20_block(key, counter_low, extended_nonce, keystream);
if (ret != 0) {
return ret;
}
/* XOR with input to produce output */
size_t block_len = (length < CHACHA20_BLOCK_SIZE) ? length : CHACHA20_BLOCK_SIZE;
for (size_t i = 0; i < block_len; i++) {
output[offset + i] = input[offset + i] ^ keystream[i];
}
/* Move to next block */
offset += block_len;
length -= block_len;
counter_low++;
/* Check for counter_low overflow and increment counter_high */
if (counter_low == 0) {
counter_high++;
/* Check for counter_high overflow (extremely unlikely - > 1 exabyte) */
if (counter_high == 0) {
return -1; /* Extended counter wrapped around */
}
}
}
return 0;
}

View File

@@ -79,6 +79,25 @@ int chacha20_encrypt(const uint8_t key[32], uint32_t counter,
const uint8_t nonce[12], const uint8_t* input,
uint8_t* output, size_t length);
/**
* ChaCha20 encryption/decryption with extended counter (64-bit)
*
* Extended version that supports files larger than 256GB by using
* part of the nonce as a high-order counter extension.
*
* @param key[in] 32-byte key
* @param counter_low[in] Initial 32-bit counter value (low bits)
* @param counter_high[in] Initial 32-bit counter value (high bits)
* @param nonce[in] 8-byte reduced nonce (instead of 12)
* @param input[in] Input data to encrypt/decrypt
* @param output[out] Output buffer (can be same as input)
* @param length[in] Length of input data in bytes
* @return 0 on success, negative on error
*/
int chacha20_encrypt_extended(const uint8_t key[32], uint32_t counter_low,
uint32_t counter_high, const uint8_t nonce[8],
const uint8_t* input, uint8_t* output, size_t length);
/*
* ============================================================================
* UTILITY FUNCTIONS

92
src/padding.c Normal file
View File

@@ -0,0 +1,92 @@
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include "main.h"
////////////////////////////////////////////////////////////////////////////////
// MESSAGE PADDING IMPLEMENTATION
// ISO/IEC 9797-1 Method 2 (Padmé Padding)
// with Exponential Bucketing for Traffic Analysis Resistance
////////////////////////////////////////////////////////////////////////////////
// Calculate required chunk size using exponential bucketing
// Starting at 256 bytes, doubling each time
// Provides strong protection against length analysis attacks
size_t calculate_chunk_size(size_t msg_len) {
size_t chunk = 256; // Minimum chunk size: 256 bytes
// Need space for message + 0x80 byte (minimum 1 byte padding)
while (chunk < msg_len + 1) {
chunk *= 2;
}
return chunk;
}
// Apply ISO/IEC 9797-1 Method 2 (Padmé) padding
// Appends 0x80 byte followed by 0x00 bytes to reach chunk boundary
// Returns 0 on success, non-zero on error
int apply_padme_padding(unsigned char* buffer, size_t msg_len, size_t chunk_size) {
if (!buffer) {
return 1; // Error: null pointer
}
if (chunk_size < msg_len + 1) {
return 2; // Error: chunk size too small for message + padding
}
// Apply padding: 0x80 followed by 0x00 bytes
buffer[msg_len] = 0x80;
// Fill remaining bytes with 0x00
if (chunk_size > msg_len + 1) {
memset(buffer + msg_len + 1, 0x00, chunk_size - msg_len - 1);
}
return 0; // Success
}
// Remove ISO/IEC 9797-1 Method 2 (Padmé) padding
// Scans backwards for 0x80 marker, validates padding
// Returns 0 on success, non-zero on error
// Sets msg_len to the actual message length (excluding padding)
int remove_padme_padding(const unsigned char* buffer, size_t chunk_size, size_t* msg_len) {
if (!buffer || !msg_len) {
return 1; // Error: null pointer
}
if (chunk_size == 0) {
return 2; // Error: invalid chunk size
}
// Scan backwards from end to find 0x80 marker
for (int i = chunk_size - 1; i >= 0; i--) {
if (buffer[i] == 0x80) {
// Found the padding marker
*msg_len = i;
return 0; // Success
} else if (buffer[i] != 0x00) {
// Found non-zero, non-0x80 byte - invalid padding
return 3; // Error: invalid padding (corrupted or tampered data)
}
}
// No 0x80 marker found - invalid padding
return 4; // Error: no padding marker found
}
// Helper function to get human-readable chunk size
// Useful for debugging and user feedback
void format_chunk_size(size_t chunk_size, char* buffer, size_t buffer_size) {
if (!buffer || buffer_size == 0) return;
if (chunk_size < 1024) {
snprintf(buffer, buffer_size, "%zu bytes", chunk_size);
} else if (chunk_size < 1024 * 1024) {
snprintf(buffer, buffer_size, "%.1f KB", chunk_size / 1024.0);
} else if (chunk_size < 1024 * 1024 * 1024) {
snprintf(buffer, buffer_size, "%.1f MB", chunk_size / (1024.0 * 1024.0));
} else {
snprintf(buffer, buffer_size, "%.1f GB", chunk_size / (1024.0 * 1024.0 * 1024.0));
}
}

View File

@@ -43,9 +43,9 @@ int show_pad_info(const char* chksum) {
printf("ChkSum: %s\n", chksum);
printf("File: %s\n", pad_filename);
double size_gb = (double)st.st_size / (1024.0 * 1024.0 * 1024.0);
double used_gb = (double)used_bytes / (1024.0 * 1024.0 * 1024.0);
double remaining_gb = (double)(st.st_size - used_bytes) / (1024.0 * 1024.0 * 1024.0);
double size_gb = (double)st.st_size / (1000.0 * 1000.0 * 1000.0);
double used_gb = (double)used_bytes / (1000.0 * 1000.0 * 1000.0);
double remaining_gb = (double)(st.st_size - used_bytes) / (1000.0 * 1000.0 * 1000.0);
printf("Total size: %.2f GB (%lu bytes)\n", size_gb, st.st_size);
printf("Used: %.2f GB (%lu bytes)\n", used_gb, used_bytes);
@@ -89,18 +89,18 @@ int generate_pad(uint64_t size_bytes, int display_progress) {
const char* pads_dir = get_current_pads_dir();
struct statvfs stat;
if (statvfs(pads_dir, &stat) == 0) {
// Use f_bfree (total free blocks) instead of f_bavail (available to non-root)
// This gives the actual free space on the filesystem, which is more accurate
// for removable media and user-owned directories
uint64_t available_bytes = stat.f_bfree * stat.f_frsize;
double available_gb = (double)available_bytes / (1024.0 * 1024.0 * 1024.0);
double required_gb = (double)size_bytes / (1024.0 * 1024.0 * 1024.0);
// Use f_bavail (available to non-root users) for accurate space reporting
// This accounts for filesystem reserved space (e.g., 5% on ext4)
uint64_t available_bytes = stat.f_bavail * stat.f_frsize;
double available_gb = (double)available_bytes / (1000.0 * 1000.0 * 1000.0);
double required_gb = (double)size_bytes / (1000.0 * 1000.0 * 1000.0);
if (available_bytes < size_bytes) {
printf("\n⚠ WARNING: Insufficient disk space!\n");
printf(" Required: %.2f GB\n", required_gb);
printf(" Available: %.2f GB\n", available_gb);
printf(" Required: %.2f GB (%lu bytes)\n", required_gb, size_bytes);
printf(" Available: %.2f GB (%lu bytes)\n", available_gb, available_bytes);
printf(" Shortfall: %.2f GB\n", required_gb - available_gb);
printf(" Location: %s\n", pads_dir);
printf("\nContinue anyway? (y/N): ");
char response[10];
@@ -129,11 +129,54 @@ int generate_pad(uint64_t size_bytes, int display_progress) {
FILE* pad_file = fopen(temp_filename, "wb");
if (!pad_file) {
printf("Error: Cannot create temporary pad file %s\n", temp_filename);
printf("Error: Cannot create temporary pad file '%s': %s (errno %d)\n",
temp_filename, strerror(errno), errno);
fclose(urandom);
return 1;
}
// Preallocate full file size using posix_fallocate for guaranteed space reservation
// This actually allocates disk blocks (unlike ftruncate which creates sparse files)
int fd = fileno(pad_file);
double size_gb = (double)size_bytes / (1000.0 * 1000.0 * 1000.0);
if (display_progress) {
printf("Allocating %.2f GB on disk...\n", size_gb);
}
int alloc_result = posix_fallocate(fd, 0, (off_t)size_bytes);
if (alloc_result != 0) {
printf("Error: Failed to allocate %.2f GB temp file: %s (errno %d)\n",
size_gb, strerror(alloc_result), alloc_result);
printf(" Temp file: %s\n", temp_filename);
printf(" Location: %s\n", pads_dir);
if (alloc_result == ENOSPC) {
printf(" Cause: No space left on device\n");
printf(" This means the actual available space is less than reported\n");
} else if (alloc_result == EOPNOTSUPP) {
printf(" Cause: Filesystem doesn't support posix_fallocate\n");
printf(" Falling back to ftruncate (sparse file)...\n");
if (ftruncate(fd, (off_t)size_bytes) != 0) {
printf(" Fallback failed: %s\n", strerror(errno));
fclose(pad_file);
fclose(urandom);
unlink(temp_filename);
return 1;
}
} else {
printf(" Possible causes: quota limits, filesystem restrictions\n");
fclose(pad_file);
fclose(urandom);
unlink(temp_filename);
return 1;
}
}
if (display_progress && alloc_result == 0) {
printf("✓ Allocated %.2f GB on disk (guaranteed space)\n", size_gb);
}
unsigned char buffer[64 * 1024]; // 64KB buffer
uint64_t bytes_written = 0;
time_t start_time = time(NULL);
@@ -149,7 +192,8 @@ int generate_pad(uint64_t size_bytes, int display_progress) {
}
if (fread(buffer, 1, (size_t)chunk_size, urandom) != (size_t)chunk_size) {
printf("Error: Failed to read from /dev/urandom\n");
printf("Error: Failed to read %lu bytes from /dev/urandom at position %lu: %s (errno %d)\n",
chunk_size, bytes_written, strerror(errno), errno);
fclose(urandom);
fclose(pad_file);
unlink(temp_filename);
@@ -157,7 +201,11 @@ int generate_pad(uint64_t size_bytes, int display_progress) {
}
if (fwrite(buffer, 1, (size_t)chunk_size, pad_file) != (size_t)chunk_size) {
printf("Error: Failed to write to pad file\n");
printf("Error: fwrite failed for %lu bytes at position %lu/%lu (%.1f%%): %s (errno %d)\n",
chunk_size, bytes_written, size_bytes,
(double)bytes_written / size_bytes * 100.0, strerror(errno), errno);
printf(" Temp file: %s\n", temp_filename);
printf(" Disk space was checked - possible causes: fragmentation, I/O timeout, quota\n");
fclose(urandom);
fclose(pad_file);
unlink(temp_filename);
@@ -205,10 +253,10 @@ int generate_pad(uint64_t size_bytes, int display_progress) {
}
// Initialize state file with offset 32 (first 32 bytes reserved for checksum encryption)
FILE* state_file = fopen(state_path, "wb");
FILE* state_file = fopen(state_path, "w");
if (state_file) {
uint64_t reserved_bytes = 32;
fwrite(&reserved_bytes, sizeof(uint64_t), 1, state_file);
fprintf(state_file, "offset=%lu\n", reserved_bytes);
fclose(state_file);
} else {
printf("Error: Failed to create state file\n");
@@ -216,8 +264,10 @@ int generate_pad(uint64_t size_bytes, int display_progress) {
return 1;
}
double size_gb = (double)size_bytes / (1024.0 * 1024.0 * 1024.0);
printf("Generated pad: %s (%.2f GB)\n", pad_path, size_gb);
if (display_progress) {
double final_size_gb = (double)size_bytes / (1000.0 * 1000.0 * 1000.0);
printf("Generated pad: %s (%.2f GB)\n", pad_path, final_size_gb);
}
printf("Pad checksum: %s\n", chksum_hex);
printf("State file: %s\n", state_path);
printf("Pad file set to read-only\n");
@@ -242,7 +292,7 @@ int read_state_offset(const char* pad_chksum, uint64_t* offset) {
return 0;
}
// Try to read as text format first (new format)
// Read text format only (required format: "offset=<number>")
char line[128];
if (fgets(line, sizeof(line), state_file)) {
// Check if it's text format (starts with "offset=")
@@ -252,21 +302,13 @@ int read_state_offset(const char* pad_chksum, uint64_t* offset) {
return 0;
}
// Not text format, try binary format (legacy)
// Not in proper text format - error
fclose(state_file);
state_file = fopen(state_filename, "rb");
if (!state_file) {
fprintf(stderr, "Error: State file '%s' is not in proper text format\n", state_filename);
fprintf(stderr, "Expected format: offset=<number>\n");
fprintf(stderr, "Please convert old binary state files to text format\n");
*offset = 0;
return 0;
}
if (fread(offset, sizeof(uint64_t), 1, state_file) != 1) {
fclose(state_file);
*offset = 0;
return 0;
}
fclose(state_file);
return 0;
return 1;
}
fclose(state_file);
@@ -384,25 +426,25 @@ char* select_pad_interactive(const char* title, const char* prompt, pad_filter_t
}
// Format total size
if (st.st_size < 1024) {
if (st.st_size < 1000) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%luB", st.st_size);
} else if (st.st_size < 1024 * 1024) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fKB", (double)st.st_size / 1024.0);
} else if (st.st_size < 1024 * 1024 * 1024) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fMB", (double)st.st_size / (1024.0 * 1024.0));
} else if (st.st_size < 1000 * 1000) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fKB", (double)st.st_size / 1000.0);
} else if (st.st_size < 1000 * 1000 * 1000) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fMB", (double)st.st_size / (1000.0 * 1000.0));
} else {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.2fGB", (double)st.st_size / (1024.0 * 1024.0 * 1024.0));
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.2fGB", (double)st.st_size / (1000.0 * 1000.0 * 1000.0));
}
// Format used size
if (used_bytes < 1024) {
if (used_bytes < 1000) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%luB", used_bytes);
} else if (used_bytes < 1024 * 1024) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fKB", (double)used_bytes / 1024.0);
} else if (used_bytes < 1024 * 1024 * 1024) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fMB", (double)used_bytes / (1024.0 * 1024.0));
} else if (used_bytes < 1000 * 1000) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fKB", (double)used_bytes / 1000.0);
} else if (used_bytes < 1000 * 1000 * 1000) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fMB", (double)used_bytes / (1000.0 * 1000.0));
} else {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.2fGB", (double)used_bytes / (1024.0 * 1024.0 * 1024.0));
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.2fGB", (double)used_bytes / (1000.0 * 1000.0 * 1000.0));
}
// Calculate percentage
@@ -428,6 +470,13 @@ char* select_pad_interactive(const char* title, const char* prompt, pad_filter_t
return NULL;
}
// If only one pad available, auto-select it
if (pad_count == 1) {
printf("\n%s\n", title);
printf("Only one pad available - auto-selecting: %.16s...\n\n", pads[0].chksum);
return strdup(pads[0].chksum);
}
// Calculate minimal unique prefixes for each pad
char prefixes[100][65];
int prefix_lengths[100];
@@ -584,6 +633,27 @@ int handle_pads_menu(void) {
// Get list of pads from current directory
const char* pads_dir = get_current_pads_dir();
// Display directory and space information
printf("Pads Directory: %s\n", pads_dir);
// Get filesystem space information
struct statvfs vfs_stat;
if (statvfs(pads_dir, &vfs_stat) == 0) {
uint64_t total_bytes = vfs_stat.f_blocks * vfs_stat.f_frsize;
uint64_t available_bytes = vfs_stat.f_bavail * vfs_stat.f_frsize;
uint64_t used_bytes = total_bytes - (vfs_stat.f_bfree * vfs_stat.f_frsize);
double total_gb = (double)total_bytes / (1000.0 * 1000.0 * 1000.0);
double available_gb = (double)available_bytes / (1000.0 * 1000.0 * 1000.0);
double used_gb = (double)used_bytes / (1000.0 * 1000.0 * 1000.0);
double used_percent = (double)used_bytes / total_bytes * 100.0;
printf("Drive Space: %.2f GB total, %.2f GB used (%.1f%%), %.2f GB available\n",
total_gb, used_gb, used_percent, available_gb);
}
printf("\n");
DIR* dir = opendir(pads_dir);
if (!dir) {
printf("Error: Cannot open pads directory %s\n", pads_dir);
@@ -619,25 +689,25 @@ int handle_pads_menu(void) {
read_state_offset(pads[pad_count].chksum, &used_bytes);
// Format total size
if (st.st_size < 1024) {
if (st.st_size < 1000) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%luB", st.st_size);
} else if (st.st_size < 1024 * 1024) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fKB", (double)st.st_size / 1024.0);
} else if (st.st_size < 1024 * 1024 * 1024) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fMB", (double)st.st_size / (1024.0 * 1024.0));
} else if (st.st_size < 1000 * 1000) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fKB", (double)st.st_size / 1000.0);
} else if (st.st_size < 1000 * 1000 * 1000) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fMB", (double)st.st_size / (1000.0 * 1000.0));
} else {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.2fGB", (double)st.st_size / (1024.0 * 1024.0 * 1024.0));
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.2fGB", (double)st.st_size / (1000.0 * 1000.0 * 1000.0));
}
// Format used size
if (used_bytes < 1024) {
if (used_bytes < 1000) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%luB", used_bytes);
} else if (used_bytes < 1024 * 1024) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fKB", (double)used_bytes / 1024.0);
} else if (used_bytes < 1024 * 1024 * 1024) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fMB", (double)used_bytes / (1024.0 * 1024.0));
} else if (used_bytes < 1000 * 1000) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fKB", (double)used_bytes / 1000.0);
} else if (used_bytes < 1000 * 1000 * 1000) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fMB", (double)used_bytes / (1000.0 * 1000.0));
} else {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.2fGB", (double)used_bytes / (1024.0 * 1024.0 * 1024.0));
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.2fGB", (double)used_bytes / (1000.0 * 1000.0 * 1000.0));
}
// Calculate percentage
@@ -949,9 +1019,9 @@ int handle_verify_pad(const char* chksum) {
printf("ChkSum: %s\n", chksum);
printf("File: %s\n", pad_filename);
double size_gb = (double)st.st_size / (1024.0 * 1024.0 * 1024.0);
double used_gb = (double)used_bytes / (1024.0 * 1024.0 * 1024.0);
double remaining_gb = (double)(st.st_size - used_bytes) / (1024.0 * 1024.0 * 1024.0);
double size_gb = (double)st.st_size / (1000.0 * 1000.0 * 1000.0);
double used_gb = (double)used_bytes / (1000.0 * 1000.0 * 1000.0);
double remaining_gb = (double)(st.st_size - used_bytes) / (1000.0 * 1000.0 * 1000.0);
printf("Total size: %.2f GB (%lu bytes)\n", size_gb, st.st_size);
printf("Used: %.2f GB (%lu bytes)\n", used_gb, used_bytes);
@@ -1017,7 +1087,7 @@ int handle_delete_pad(const char* chksum) {
uint64_t used_bytes;
read_state_offset(chksum, &used_bytes);
double size_gb = (double)st.st_size / (1024.0 * 1024.0 * 1024.0);
double size_gb = (double)st.st_size / (1000.0 * 1000.0 * 1000.0);
printf("\nPad to delete:\n");
printf("Checksum: %s\n", chksum);
printf("Size: %.2f GB\n", size_gb);
@@ -1205,7 +1275,7 @@ int handle_add_entropy_to_pad(const char* pad_chksum) {
target_bytes = (size_t)pad_stat.st_size;
printf("\nHardware RNG selected - will enhance entire pad with hardware entropy\n");
printf("Pad size: %.2f GB (%zu bytes)\n",
(double)target_bytes / (1024.0 * 1024.0 * 1024.0), target_bytes);
(double)target_bytes / (1000.0 * 1000.0 * 1000.0), target_bytes);
} else if (entropy_source == ENTROPY_SOURCE_FILE) {
// Special handling for file entropy - ask for file path first
char file_path[512];
@@ -1227,7 +1297,7 @@ int handle_add_entropy_to_pad(const char* pad_chksum) {
printf("\nFile vs Pad Size Analysis:\n");
printf(" Entropy file: %zu bytes\n", file_size);
printf(" Target pad: %.2f GB (%lu bytes)\n",
(double)pad_size / (1024.0 * 1024.0 * 1024.0), pad_size);
(double)pad_size / (1000.0 * 1000.0 * 1000.0), pad_size);
// Smart method selection based on file size vs pad size
if (file_size >= pad_size) {
@@ -1411,10 +1481,10 @@ int handle_add_entropy_to_pad(const char* pad_chksum) {
printf("✓ Device test successful!\n");
printf(" Test collected: %zu bytes in %.1f seconds\n", test_collected, test_time);
printf(" Speed: %.1f KB/s (%.1f MB/s)\n", bytes_per_second / 1024.0, bytes_per_second / (1024.0 * 1024.0));
printf(" Speed: %.1f KB/s (%.1f MB/s)\n", bytes_per_second / 1000.0, bytes_per_second / (1000.0 * 1000.0));
printf("\nPad enhancement estimate:\n");
printf(" Pad size: %.2f GB (%zu bytes)\n", (double)target_bytes / (1024.0 * 1024.0 * 1024.0), target_bytes);
printf(" Pad size: %.2f GB (%zu bytes)\n", (double)target_bytes / (1000.0 * 1000.0 * 1000.0), target_bytes);
if (estimated_hours >= 1.0) {
printf(" Estimated time: %.1f hours\n", estimated_hours);

View File

@@ -1,10 +1,12 @@
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include "main.h"
// Global state variables
static char current_pads_dir[512] = DEFAULT_PADS_DIR;
static char current_pads_dir[512] = "";
static int is_interactive_mode = 0;
static int pads_dir_initialized = 0;
// Terminal dimensions (moved from ui.c to state.c for global access)
static int terminal_width = 80; // Default fallback width
@@ -13,6 +15,18 @@ static int terminal_height = 24; // Default fallback height
// Getters and setters for global state
const char* get_current_pads_dir(void) {
// Initialize pads directory on first access if not already set
if (!pads_dir_initialized && strlen(current_pads_dir) == 0) {
char* home_dir = getenv("HOME");
if (home_dir) {
snprintf(current_pads_dir, sizeof(current_pads_dir), "%s/.otp/pads", home_dir);
} else {
// Fallback to relative path if HOME is not set
strncpy(current_pads_dir, DEFAULT_PADS_DIR, sizeof(current_pads_dir) - 1);
}
current_pads_dir[sizeof(current_pads_dir) - 1] = '\0';
pads_dir_initialized = 1;
}
return current_pads_dir;
}
@@ -20,6 +34,7 @@ void set_current_pads_dir(const char* dir) {
if (dir) {
strncpy(current_pads_dir, dir, sizeof(current_pads_dir) - 1);
current_pads_dir[sizeof(current_pads_dir) - 1] = '\0';
pads_dir_initialized = 1;
}
}

View File

@@ -153,7 +153,7 @@ int collect_truerng_entropy_streaming_from_device(const hardware_rng_device_t* d
if (display_progress) {
printf("Streaming entropy from %s to pad...\n", device->friendly_name);
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1024.0*1024.0*1024.0), pad_size);
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1000.0*1000.0*1000.0), pad_size);
printf("Enhancing entire pad with hardware entropy\n");
}

514
src/ui.c
View File

@@ -99,6 +99,9 @@ int interactive_mode(void) {
case 'F':
handle_file_encrypt();
break;
case 'R':
handle_directory_encrypt();
break;
case 'D':
handle_decrypt_menu();
break;
@@ -127,6 +130,7 @@ void show_main_menu(void) {
printf(" \033[4mT\033[0mext encrypt\n"); //TEXT ENCRYPT
printf(" \033[4mF\033[0mile encrypt\n"); //FILE ENCRYPT
printf(" Di\033[4mr\033[0mectory encrypt\n"); //DIRECTORY ENCRYPT
printf(" \033[4mD\033[0mecrypt\n"); //DECRYPT
printf(" \033[4mP\033[0mads\n"); //PADS
printf(" E\033[4mx\033[0mit\n"); //EXIT
@@ -152,7 +156,7 @@ int handle_generate_menu(void) {
return 1;
}
double size_gb = (double)size / (1024.0 * 1024.0 * 1024.0);
double size_gb = (double)size / (1000.0 * 1000.0 * 1000.0);
printf("Generating %.2f GB pad...\n", size_gb);
printf("Note: Use 'Add entropy' in Pads menu to enhance randomness after creation.\n");
@@ -180,7 +184,7 @@ int handle_encrypt_menu(void) {
printf("\nSelect encryption type:\n");
printf(" 1. Text message\n");
printf(" 2. File\n");
printf("Enter choice (1-2): ");
printf("Enter choice (1-2) or 'esc' to cancel: ");
char choice_input[10];
if (!fgets(choice_input, sizeof(choice_input), stdin)) {
@@ -188,6 +192,14 @@ int handle_encrypt_menu(void) {
return 1;
}
choice_input[strcspn(choice_input, "\n")] = 0;
// Check for ESC/cancel
if (is_escape_input(choice_input)) {
printf("Returning to main menu...\n");
return 0;
}
int choice = atoi(choice_input);
if (choice == 1) {
@@ -209,7 +221,7 @@ int handle_encrypt_menu(void) {
printf("\nFile selection options:\n");
printf(" 1. Type file path directly\n");
printf(" 2. Use file manager\n");
printf("Enter choice (1-2): ");
printf("Enter choice (1-2) or 'esc' to cancel: ");
char file_choice[10];
char input_file[512];
@@ -219,25 +231,45 @@ int handle_encrypt_menu(void) {
return 1;
}
file_choice[strcspn(file_choice, "\n")] = 0;
// Check for ESC/cancel
if (is_escape_input(file_choice)) {
printf("Returning to main menu...\n");
return 0;
}
if (atoi(file_choice) == 2) {
// Use file manager
if (launch_file_manager(".", input_file, sizeof(input_file)) != 0) {
printf("Falling back to manual file path entry.\n");
printf("Enter input file path: ");
printf("Enter input file path (or 'esc' to cancel): ");
if (!fgets(input_file, sizeof(input_file), stdin)) {
printf("Error: Failed to read input\n");
return 1;
}
input_file[strcspn(input_file, "\n")] = 0;
// Check for ESC/cancel
if (is_escape_input(input_file)) {
printf("Returning to main menu...\n");
return 0;
}
}
} else {
// Direct file path input
printf("Enter input file path: ");
printf("Enter input file path (or 'esc' to cancel): ");
if (!fgets(input_file, sizeof(input_file), stdin)) {
printf("Error: Failed to read input\n");
return 1;
}
input_file[strcspn(input_file, "\n")] = 0;
// Check for ESC/cancel
if (is_escape_input(input_file)) {
printf("Returning to main menu...\n");
return 0;
}
}
// Check if file exists
@@ -259,14 +291,24 @@ int handle_encrypt_menu(void) {
printf("\nSelect output format:\n");
printf(" 1. Binary (.otp) - preserves file permissions\n");
printf(" 2. ASCII (.otp.asc) - text-safe format\n");
printf("Enter choice (1-2): ");
printf("Enter choice (1-2) or 'esc' to cancel: ");
char format_input[10];
if (!fgets(format_input, sizeof(format_input), stdin)) {
printf("Error: Failed to read input\n");
free(selected_pad);
return 1;
}
format_input[strcspn(format_input, "\n")] = 0;
// Check for ESC/cancel
if (is_escape_input(format_input)) {
printf("Returning to main menu...\n");
free(selected_pad);
return 0;
}
int ascii_armor = (atoi(format_input) == 2) ? 1 : 0;
// Generate default output filename with files directory and use enhanced input function
@@ -305,6 +347,7 @@ int handle_decrypt_menu(void) {
printf("\n");
print_centered_header("Smart Decrypt", 0);
printf("Enter encrypted data (paste ASCII armor), file path, or press Enter to browse files:\n");
printf("(Type 'esc' or 'q' to return to main menu)\n");
char input_line[MAX_LINE_LENGTH];
if (!fgets(input_line, sizeof(input_line), stdin)) {
@@ -315,46 +358,21 @@ int handle_decrypt_menu(void) {
// Remove newline
input_line[strcspn(input_line, "\n")] = 0;
if (strlen(input_line) == 0) {
// Empty input - launch file manager to browse for files
char selected_file[512];
if (launch_file_manager(get_files_directory(), selected_file, sizeof(selected_file)) != 0) {
printf("Error: Could not launch file manager\n");
return 1;
// Check for ESC/cancel
if (is_escape_input(input_line)) {
printf("Returning to main menu...\n");
return 0;
}
// Generate smart default output filename with files directory and use enhanced input function
char temp_default[512];
char default_output[512];
strncpy(temp_default, selected_file, sizeof(temp_default) - 1);
temp_default[sizeof(temp_default) - 1] = '\0';
// Remove common encrypted extensions to get a better default
if (strstr(temp_default, ".otp.asc")) {
// Replace .otp.asc with original extension or no extension
char* ext_pos = strstr(temp_default, ".otp.asc");
*ext_pos = '\0';
} else if (strstr(temp_default, ".otp")) {
// Replace .otp with original extension or no extension
char* ext_pos = strstr(temp_default, ".otp");
*ext_pos = '\0';
} else {
// No recognized encrypted extension, add .decrypted suffix
strncat(temp_default, ".decrypted", sizeof(temp_default) - strlen(temp_default) - 1);
// Trim leading whitespace to handle pasted content better
char* trimmed_input = input_line;
while (*trimmed_input == ' ' || *trimmed_input == '\t') {
trimmed_input++;
}
// Apply files directory default path
get_default_file_path(temp_default, default_output, sizeof(default_output));
char output_file[512];
if (get_filename_with_default("Output filename:", default_output, output_file, sizeof(output_file)) != 0) {
printf("Error: Failed to read input\n");
return 1;
}
return decrypt_file(selected_file, output_file);
}
else if (strncmp(input_line, "-----BEGIN OTP MESSAGE-----", 27) == 0) {
// Check for ASCII armor FIRST, before checking for empty input
// This handles cases where pasted text starts with the header
if (strncmp(trimmed_input, "-----BEGIN OTP MESSAGE-----", 27) == 0) {
// Looks like ASCII armor - collect the full message
char full_message[MAX_INPUT_SIZE * 4] = {0};
strcat(full_message, input_line);
@@ -372,17 +390,31 @@ int handle_decrypt_menu(void) {
return decrypt_text(NULL, full_message);
}
else {
// Check if it looks like a file path
if (access(input_line, R_OK) == 0) {
// It's a valid file - decrypt it with enhanced input for output filename
else if (strlen(trimmed_input) == 0) {
// Empty input - launch file manager to browse for files
char selected_file[512];
if (launch_file_manager(get_files_directory(), selected_file, sizeof(selected_file)) != 0) {
printf("File browsing cancelled or failed.\n");
printf("Returning to main menu...\n");
return 0;
}
// Generate smart default output filename with files directory and use enhanced input function
char temp_default[512];
char default_output[512];
strncpy(temp_default, input_line, sizeof(temp_default) - 1);
strncpy(temp_default, selected_file, sizeof(temp_default) - 1);
temp_default[sizeof(temp_default) - 1] = '\0';
// Remove common encrypted extensions to get a better default
if (strstr(temp_default, ".otp.asc")) {
if (strstr(temp_default, ".tar.gz.otp")) {
// Directory archive - remove .tar.gz.otp to get original directory name
char* ext_pos = strstr(temp_default, ".tar.gz.otp");
*ext_pos = '\0';
} else if (strstr(temp_default, ".tar.otp")) {
// Directory archive without compression - remove .tar.otp
char* ext_pos = strstr(temp_default, ".tar.otp");
*ext_pos = '\0';
} else if (strstr(temp_default, ".otp.asc")) {
// Replace .otp.asc with original extension or no extension
char* ext_pos = strstr(temp_default, ".otp.asc");
*ext_pos = '\0';
@@ -404,7 +436,81 @@ int handle_decrypt_menu(void) {
return 1;
}
return decrypt_file(input_line, output_file);
// Check if it's a directory archive
if (strstr(selected_file, ".tar.gz.otp") || strstr(selected_file, ".tar.otp")) {
// It's a directory archive - extract to directory
char extract_dir[512];
strncpy(extract_dir, output_file, sizeof(extract_dir) - 1);
extract_dir[sizeof(extract_dir) - 1] = '\0';
// Remove .tar.gz.otp or .tar.otp extension to get directory name
char* ext = strstr(extract_dir, ".tar.gz.otp");
if (!ext) ext = strstr(extract_dir, ".tar.otp");
if (ext) *ext = '\0';
printf("Extracting directory archive to: %s/\n", extract_dir);
return decrypt_and_extract_directory(selected_file, extract_dir);
} else {
return decrypt_file(selected_file, output_file);
}
}
else {
// Check if it looks like a file path
if (access(trimmed_input, R_OK) == 0) {
// It's a valid file - decrypt it with enhanced input for output filename
char temp_default[512];
char default_output[512];
strncpy(temp_default, trimmed_input, sizeof(temp_default) - 1);
temp_default[sizeof(temp_default) - 1] = '\0';
// Remove common encrypted extensions to get a better default
if (strstr(temp_default, ".tar.gz.otp")) {
// Directory archive - remove .tar.gz.otp to get original directory name
char* ext_pos = strstr(temp_default, ".tar.gz.otp");
*ext_pos = '\0';
} else if (strstr(temp_default, ".tar.otp")) {
// Directory archive without compression - remove .tar.otp
char* ext_pos = strstr(temp_default, ".tar.otp");
*ext_pos = '\0';
} else if (strstr(temp_default, ".otp.asc")) {
// Replace .otp.asc with original extension or no extension
char* ext_pos = strstr(temp_default, ".otp.asc");
*ext_pos = '\0';
} else if (strstr(temp_default, ".otp")) {
// Replace .otp with original extension or no extension
char* ext_pos = strstr(temp_default, ".otp");
*ext_pos = '\0';
} else {
// No recognized encrypted extension, add .decrypted suffix
strncat(temp_default, ".decrypted", sizeof(temp_default) - strlen(temp_default) - 1);
}
// Apply files directory default path
get_default_file_path(temp_default, default_output, sizeof(default_output));
char output_file[512];
if (get_filename_with_default("Output filename:", default_output, output_file, sizeof(output_file)) != 0) {
printf("Error: Failed to read input\n");
return 1;
}
// Check if it's a directory archive
if (strstr(trimmed_input, ".tar.gz.otp") || strstr(trimmed_input, ".tar.otp")) {
// It's a directory archive - extract to directory
char extract_dir[512];
strncpy(extract_dir, output_file, sizeof(extract_dir) - 1);
extract_dir[sizeof(extract_dir) - 1] = '\0';
// Remove .tar.gz.otp or .tar.otp extension to get directory name
char* ext = strstr(extract_dir, ".tar.gz.otp");
if (!ext) ext = strstr(extract_dir, ".tar.otp");
if (ext) *ext = '\0';
printf("Extracting directory archive to: %s/\n", extract_dir);
return decrypt_and_extract_directory(trimmed_input, extract_dir);
} else {
return decrypt_file(trimmed_input, output_file);
}
} else {
printf("Input not recognized as ASCII armor or valid file path.\n");
return 1;
@@ -472,14 +578,24 @@ int handle_file_encrypt(void) {
printf("\nSelect output format:\n");
printf(" 1. Binary (.otp) - preserves file permissions\n");
printf(" 2. ASCII (.otp.asc) - text-safe format\n");
printf("Enter choice (1-2): ");
printf("Enter choice (1-2) or 'esc' to cancel: ");
char format_input[10];
if (!fgets(format_input, sizeof(format_input), stdin)) {
printf("Error: Failed to read input\n");
free(selected_pad);
return 1;
}
format_input[strcspn(format_input, "\n")] = 0;
// Check for ESC/cancel
if (is_escape_input(format_input)) {
printf("Returning to main menu...\n");
free(selected_pad);
return 0;
}
int ascii_armor = (atoi(format_input) == 2) ? 1 : 0;
// Generate default output filename
@@ -503,3 +619,301 @@ int handle_file_encrypt(void) {
free(selected_pad);
return result;
}
// Comparison function for qsort (case-insensitive)
static int compare_dir_strings(const void *a, const void *b) {
return strcasecmp(*(const char**)a, *(const char**)b);
}
// Function to get list of subdirectories
static int get_subdirs(const char *path, char ***subdirs) {
DIR *dir = opendir(path);
if (!dir) return 0;
int count = 0;
int capacity = 10;
*subdirs = malloc(capacity * sizeof(char*));
struct dirent *entry;
while ((entry = readdir(dir)) != NULL) {
if (entry->d_type == DT_DIR) {
// Skip . and ..
if (strcmp(entry->d_name, ".") == 0 || strcmp(entry->d_name, "..") == 0)
continue;
if (count >= capacity) {
capacity *= 2;
*subdirs = realloc(*subdirs, capacity * sizeof(char*));
}
(*subdirs)[count++] = strdup(entry->d_name);
}
}
closedir(dir);
// Sort alphabetically
if (count > 0) {
qsort(*subdirs, count, sizeof(char*), compare_dir_strings);
}
return count;
}
// Function to get a single keypress without echo
static int getch_nav(void) {
struct termios oldt, newt;
int ch;
tcgetattr(STDIN_FILENO, &oldt);
newt = oldt;
newt.c_lflag &= ~(ICANON | ECHO);
tcsetattr(STDIN_FILENO, TCSANOW, &newt);
ch = getchar();
tcsetattr(STDIN_FILENO, TCSANOW, &oldt);
return ch;
}
// Navigate directories with arrow keys
static char* navigate_directory_interactive(void) {
char current_path[PATH_MAX];
char original_path[PATH_MAX];
getcwd(original_path, sizeof(original_path));
getcwd(current_path, sizeof(current_path));
char **subdirs = NULL;
int subdir_count = 0;
int current_index = 0;
printf("\nNavigate with arrow keys (UP/DOWN: cycle, RIGHT: enter, LEFT: back, ENTER: select, Q: cancel)\n");
printf("\033[?25l"); // Hide cursor
while (1) {
// Clear line and show current path
printf("\r\033[K%s", current_path);
// If we have subdirectories and an index, show current selection
if (subdir_count > 0 && current_index < subdir_count) {
printf("/%s", subdirs[current_index]);
}
fflush(stdout);
int ch = getch_nav();
// Handle arrow keys (they come as escape sequences)
if (ch == 27) { // ESC sequence
getch_nav(); // Skip '['
ch = getch_nav();
if (ch == 'A') { // UP arrow
// Load subdirs if not loaded
if (subdirs == NULL) {
subdir_count = get_subdirs(current_path, &subdirs);
current_index = 0;
} else if (subdir_count > 0) {
current_index = (current_index - 1 + subdir_count) % subdir_count;
}
}
else if (ch == 'B') { // DOWN arrow
// Load subdirs if not loaded
if (subdirs == NULL) {
subdir_count = get_subdirs(current_path, &subdirs);
current_index = 0;
} else if (subdir_count > 0) {
current_index = (current_index + 1) % subdir_count;
}
}
else if (ch == 'C') { // RIGHT arrow - go deeper
if (subdir_count > 0 && current_index < subdir_count) {
// Navigate into selected directory
char new_path[PATH_MAX];
snprintf(new_path, sizeof(new_path), "%s/%s", current_path, subdirs[current_index]);
if (chdir(new_path) == 0) {
getcwd(current_path, sizeof(current_path));
// Free old subdirs
for (int i = 0; i < subdir_count; i++) {
free(subdirs[i]);
}
free(subdirs);
subdirs = NULL;
// Load subdirs of new directory and show first one
subdir_count = get_subdirs(current_path, &subdirs);
current_index = 0;
}
}
}
else if (ch == 'D') { // LEFT arrow - go up
if (chdir("..") == 0) {
getcwd(current_path, sizeof(current_path));
// Free old subdirs
for (int i = 0; i < subdir_count; i++) {
free(subdirs[i]);
}
free(subdirs);
subdirs = NULL;
subdir_count = 0;
current_index = 0;
}
}
}
else if (ch == '\n' || ch == '\r') { // ENTER - confirm selection
// If a subdirectory is displayed, navigate into it first
if (subdir_count > 0 && current_index < subdir_count) {
char new_path[PATH_MAX];
snprintf(new_path, sizeof(new_path), "%s/%s", current_path, subdirs[current_index]);
if (chdir(new_path) == 0) {
getcwd(current_path, sizeof(current_path));
}
}
break;
}
else if (ch == 'q' || ch == 'Q') { // Q to quit
printf("\033[?25h\n"); // Show cursor
// Restore original directory
chdir(original_path);
// Clean up
for (int i = 0; i < subdir_count; i++) {
free(subdirs[i]);
}
free(subdirs);
return NULL;
}
}
printf("\033[?25h\n"); // Show cursor
// Clean up
for (int i = 0; i < subdir_count; i++) {
free(subdirs[i]);
}
free(subdirs);
// Restore original directory before returning
char* result = strdup(current_path);
chdir(original_path);
return result;
}
int handle_directory_encrypt(void) {
printf("\n");
print_centered_header("Directory Encrypt", 0);
// Directory selection options
printf("\nDirectory selection options:\n");
printf(" 1. Type directory path directly\n");
printf(" 2. Navigate with arrow keys\n");
printf(" 3. Use file manager (navigate to directory)\n");
printf("Enter choice (1-3) or 'esc' to cancel: ");
char choice_input[10];
char dir_path[512];
if (!fgets(choice_input, sizeof(choice_input), stdin)) {
printf("Error: Failed to read input\n");
return 1;
}
choice_input[strcspn(choice_input, "\n")] = 0;
// Check for ESC/cancel
if (is_escape_input(choice_input)) {
printf("Returning to main menu...\n");
return 0;
}
int choice = atoi(choice_input);
if (choice == 2) {
// Use arrow key navigation
char* selected = navigate_directory_interactive();
if (!selected) {
printf("Directory selection cancelled.\n");
return 0;
}
strncpy(dir_path, selected, sizeof(dir_path) - 1);
dir_path[sizeof(dir_path) - 1] = '\0';
free(selected);
printf("Selected: %s\n", dir_path);
}
else if (choice == 3) {
// Use directory manager
if (launch_directory_manager(".", dir_path, sizeof(dir_path)) != 0) {
printf("Falling back to manual directory path entry.\n");
printf("Enter directory path to encrypt (or 'esc' to cancel): ");
if (!fgets(dir_path, sizeof(dir_path), stdin)) {
printf("Error: Failed to read input\n");
return 1;
}
dir_path[strcspn(dir_path, "\n")] = 0;
// Check for ESC/cancel
if (is_escape_input(dir_path)) {
printf("Returning to main menu...\n");
return 0;
}
}
} else {
// Direct directory path input
printf("Enter directory path to encrypt (or 'esc' to cancel): ");
if (!fgets(dir_path, sizeof(dir_path), stdin)) {
printf("Error: Failed to read input\n");
return 1;
}
dir_path[strcspn(dir_path, "\n")] = 0;
// Check for ESC/cancel
if (is_escape_input(dir_path)) {
printf("Returning to main menu...\n");
return 0;
}
}
// Check if directory exists
struct stat st;
if (stat(dir_path, &st) != 0 || !S_ISDIR(st.st_mode)) {
printf("Error: '%s' is not a valid directory\n", dir_path);
return 1;
}
// Select pad
char* selected_pad = select_pad_interactive("Select Pad for Directory Encryption",
"Select pad (by prefix)",
PAD_FILTER_ALL, 1);
if (!selected_pad) {
printf("Directory encryption cancelled.\n");
return 1;
}
// Generate default output filename - append .tar.gz.otp to the directory path
char default_output[1024];
// Remove trailing slash if present
char clean_path[512];
strncpy(clean_path, dir_path, sizeof(clean_path) - 1);
clean_path[sizeof(clean_path) - 1] = '\0';
size_t path_len = strlen(clean_path);
if (path_len > 0 && clean_path[path_len - 1] == '/') {
clean_path[path_len - 1] = '\0';
}
snprintf(default_output, sizeof(default_output), "%s.tar.gz.otp", clean_path);
// Get output filename
char output_file[512];
if (get_filename_with_default("Output filename:", default_output, output_file, sizeof(output_file)) != 0) {
printf("Error: Failed to read input\n");
free(selected_pad);
return 1;
}
// Encrypt directory
int result = encrypt_directory(dir_path, selected_pad, output_file);
free(selected_pad);
return result;
}

View File

@@ -19,6 +19,7 @@
// Global variables for preferences
static char default_pad_path[1024] = "";
static char pads_directory[1024] = "";
void show_progress(uint64_t current, uint64_t total, time_t start_time) {
time_t now = time(NULL);
@@ -161,7 +162,8 @@ int launch_text_editor(const char* initial_content, char* result_buffer, size_t
char* get_preferred_file_manager(void) {
// Try file managers in order of preference
const char* file_managers[] = {"ranger", "fzf", "nnn", "lf", NULL};
// fzf is first because it's more intuitive with fuzzy search
const char* file_managers[] = {"fzf", "ranger", "nnn", "lf", NULL};
for (int i = 0; file_managers[i] != NULL; i++) {
char command[512];
@@ -177,7 +179,8 @@ char* get_preferred_file_manager(void) {
int launch_file_manager(const char* start_directory, char* selected_file, size_t buffer_size) {
char* fm = get_preferred_file_manager();
if (!fm) {
printf("No file manager found. Please install ranger, fzf, nnn, or lf.\n");
printf("No file manager found. Please install fzf, ranger, nnn, or lf.\n");
printf("Recommended: sudo apt install fzf\n");
printf("Falling back to manual file path entry.\n");
return 1; // Fall back to manual entry
}
@@ -190,6 +193,13 @@ int launch_file_manager(const char* start_directory, char* selected_file, size_t
printf("Opening %s for file selection...\n", fm);
// Show helpful instructions based on file manager
if (strcmp(fm, "fzf") == 0) {
printf("Instructions: Type to search, use arrow keys, press Enter to select\n");
} else if (strcmp(fm, "ranger") == 0) {
printf("Instructions: Arrow keys or j/k to navigate, Enter or l to select, q to quit\n");
}
if (strcmp(fm, "ranger") == 0) {
snprintf(command, sizeof(command), "cd '%s' && ranger --choosefile=%s",
start_directory ? start_directory : ".", temp_filename);
@@ -240,6 +250,103 @@ int launch_file_manager(const char* start_directory, char* selected_file, size_t
return 1; // Fall back to manual entry
}
int launch_directory_manager(const char* start_directory, char* selected_dir, size_t buffer_size) {
char* fm = get_preferred_file_manager();
if (!fm) {
printf("No file manager found. Please install fzf, ranger, nnn, or lf.\n");
printf("Recommended: sudo apt install fzf\n");
printf("Falling back to manual directory path entry.\n");
return 1; // Fall back to manual entry
}
char temp_filename[64];
snprintf(temp_filename, sizeof(temp_filename), "/tmp/otp_dir_%ld.tmp", time(NULL));
char command[512];
int result = 1;
printf("Opening %s for directory selection...\n", fm);
// Show helpful instructions based on file manager
if (strcmp(fm, "fzf") == 0) {
printf("Instructions: Type to search, use arrow keys, press Enter to select directory\n");
} else if (strcmp(fm, "ranger") == 0) {
printf("Instructions: Navigate INTO the directory, then press 'q' to quit and select it\n");
}
if (strcmp(fm, "ranger") == 0) {
snprintf(command, sizeof(command), "cd '%s' && ranger --choosedir=%s",
start_directory ? start_directory : ".", temp_filename);
} else if (strcmp(fm, "fzf") == 0) {
// fzf doesn't have directory-only mode easily, use find
snprintf(command, sizeof(command), "cd '%s' && find . -type d | fzf > %s",
start_directory ? start_directory : ".", temp_filename);
} else if (strcmp(fm, "nnn") == 0) {
snprintf(command, sizeof(command), "cd '%s' && nnn -p %s",
start_directory ? start_directory : ".", temp_filename);
} else if (strcmp(fm, "lf") == 0) {
snprintf(command, sizeof(command), "cd '%s' && lf -selection-path=%s",
start_directory ? start_directory : ".", temp_filename);
}
result = system(command);
if (result == 0 || result == 256) { // Some file managers return 256 on success
// Read selected directory from temp file
FILE* temp_file = fopen(temp_filename, "r");
if (temp_file) {
if (fgets(selected_dir, buffer_size, temp_file)) {
// Remove trailing newline
selected_dir[strcspn(selected_dir, "\n\r")] = 0;
// For relative paths, make absolute if needed
if (selected_dir[0] == '.' && selected_dir[1] == '/') {
char current_dir[512];
if (getcwd(current_dir, sizeof(current_dir))) {
char abs_path[1024];
snprintf(abs_path, sizeof(abs_path), "%s/%s", current_dir, selected_dir + 2);
strncpy(selected_dir, abs_path, buffer_size - 1);
selected_dir[buffer_size - 1] = '\0';
}
} else if (selected_dir[0] != '/') {
// Relative path without ./
char current_dir[512];
if (getcwd(current_dir, sizeof(current_dir))) {
char abs_path[1024];
snprintf(abs_path, sizeof(abs_path), "%s/%s", current_dir, selected_dir);
strncpy(selected_dir, abs_path, buffer_size - 1);
selected_dir[buffer_size - 1] = '\0';
}
}
fclose(temp_file);
unlink(temp_filename);
free(fm);
return 0; // Success
}
fclose(temp_file);
}
}
// Clean up and indicate failure
unlink(temp_filename);
free(fm);
return 1; // Fall back to manual entry
}
// Helper function to check if input contains ESC key
int is_escape_input(const char* input) {
// Check for ESC character (ASCII 27) or empty input after ESC
if (input && (input[0] == 27 || (input[0] == '\0' && strlen(input) == 0))) {
return 1;
}
// Also check for literal "esc" or "ESC" typed
if (input && (strcasecmp(input, "esc") == 0 || strcasecmp(input, "q") == 0)) {
return 1;
}
return 0;
}
// Stdin detection functions implementation
int has_stdin_data(void) {
// Check if stdin is a pipe/redirect (not a terminal)
@@ -429,6 +536,11 @@ int load_preferences(void) {
if (strcmp(key, "default_pad") == 0) {
strncpy(default_pad_path, value, sizeof(default_pad_path) - 1);
default_pad_path[sizeof(default_pad_path) - 1] = '\0';
} else if (strcmp(key, "pads_directory") == 0) {
strncpy(pads_directory, value, sizeof(pads_directory) - 1);
pads_directory[sizeof(pads_directory) - 1] = '\0';
// Apply the pads directory from config
set_current_pads_dir(pads_directory);
}
}
}
@@ -519,13 +631,13 @@ uint64_t parse_size_string(const char* size_str) {
}
if (strcmp(unit, "K") == 0 || strcmp(unit, "KB") == 0) {
multiplier = 1024ULL;
multiplier = 1000ULL;
} else if (strcmp(unit, "M") == 0 || strcmp(unit, "MB") == 0) {
multiplier = 1024ULL * 1024ULL;
multiplier = 1000ULL * 1000ULL;
} else if (strcmp(unit, "G") == 0 || strcmp(unit, "GB") == 0) {
multiplier = 1024ULL * 1024ULL * 1024ULL;
multiplier = 1000ULL * 1000ULL * 1000ULL;
} else if (strcmp(unit, "T") == 0 || strcmp(unit, "TB") == 0) {
multiplier = 1024ULL * 1024ULL * 1024ULL * 1024ULL;
multiplier = 1000ULL * 1000ULL * 1000ULL * 1000ULL;
} else {
return 0; // Invalid unit
}
@@ -1032,6 +1144,12 @@ int save_preferences(void) {
fprintf(file, "# OTP Preferences File\n");
fprintf(file, "# This file is automatically generated and updated by the OTP program\n\n");
// Save pads directory
const char* current_pads = get_current_pads_dir();
if (current_pads && strlen(current_pads) > 0) {
fprintf(file, "pads_directory=%s\n", current_pads);
}
if (strlen(default_pad_path) > 0) {
fprintf(file, "default_pad=%s\n", default_pad_path);
}

BIN
tests/test_chacha20_extended Executable file

Binary file not shown.

View File

@@ -0,0 +1,263 @@
/*
* test_chacha20_extended.c - Test ChaCha20 extended counter implementation
*
* This test verifies that the extended counter properly handles:
* 1. Counter overflow at 2^32 blocks (256GB boundary)
* 2. Correct keystream generation across the overflow boundary
* 3. No duplicate keystream blocks
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include "../src/nostr_chacha20.h"
#define TEST_BLOCK_SIZE 64
#define BLOCKS_NEAR_OVERFLOW 10 // Test blocks around overflow point
// Test helper: Compare two blocks for equality
int blocks_equal(const uint8_t* block1, const uint8_t* block2, size_t len) {
return memcmp(block1, block2, len) == 0;
}
// Test 1: Verify extended counter handles overflow correctly
int test_counter_overflow() {
printf("Test 1: Counter overflow handling\n");
printf(" Testing counter transition from 0xFFFFFFFF to 0x00000000...\n");
uint8_t key[32];
uint8_t nonce[8];
uint8_t input[TEST_BLOCK_SIZE];
uint8_t output1[TEST_BLOCK_SIZE];
uint8_t output2[TEST_BLOCK_SIZE];
uint8_t output3[TEST_BLOCK_SIZE];
// Initialize test data
memset(key, 0xAA, 32);
memset(nonce, 0xBB, 8);
memset(input, 0, TEST_BLOCK_SIZE);
// Test at counter_low = 0xFFFFFFFE, counter_high = 0
uint32_t counter_low = 0xFFFFFFFE;
uint32_t counter_high = 0;
printf(" Block at counter_low=0xFFFFFFFE, counter_high=0...\n");
if (chacha20_encrypt_extended(key, counter_low, counter_high, nonce,
input, output1, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED: Error at counter_low=0xFFFFFFFE\n");
return 1;
}
// Test at counter_low = 0xFFFFFFFF, counter_high = 0
counter_low = 0xFFFFFFFF;
printf(" Block at counter_low=0xFFFFFFFF, counter_high=0...\n");
if (chacha20_encrypt_extended(key, counter_low, counter_high, nonce,
input, output2, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED: Error at counter_low=0xFFFFFFFF\n");
return 1;
}
// Test at counter_low = 0x00000000, counter_high = 1 (after overflow)
counter_low = 0x00000000;
counter_high = 1;
printf(" Block at counter_low=0x00000000, counter_high=1...\n");
if (chacha20_encrypt_extended(key, counter_low, counter_high, nonce,
input, output3, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED: Error at counter_low=0x00000000, counter_high=1\n");
return 1;
}
// Verify all three blocks are different (no keystream reuse)
if (blocks_equal(output1, output2, TEST_BLOCK_SIZE)) {
printf(" ❌ FAILED: Blocks at 0xFFFFFFFE and 0xFFFFFFFF are identical!\n");
return 1;
}
if (blocks_equal(output2, output3, TEST_BLOCK_SIZE)) {
printf(" ❌ FAILED: Blocks at 0xFFFFFFFF,0 and 0x00000000,1 are identical!\n");
return 1;
}
if (blocks_equal(output1, output3, TEST_BLOCK_SIZE)) {
printf(" ❌ FAILED: Blocks at 0xFFFFFFFE,0 and 0x00000000,1 are identical!\n");
return 1;
}
printf(" ✓ All blocks are unique across overflow boundary\n");
printf(" ✓ PASSED\n\n");
return 0;
}
// Test 2: Simulate processing data that crosses 256GB boundary
int test_large_file_simulation() {
printf("Test 2: Large file simulation (256GB+ boundary)\n");
printf(" Simulating processing across 256GB boundary...\n");
uint8_t key[32];
uint8_t nonce[8];
uint8_t input[1024];
uint8_t output[1024];
// Initialize test data
memset(key, 0x55, 32);
memset(nonce, 0x77, 8);
for (int i = 0; i < 1024; i++) {
input[i] = i & 0xFF;
}
// Simulate being at 256GB - 512 bytes (just before overflow)
// 256GB = 2^32 blocks * 64 bytes = 274,877,906,944 bytes
// Block number at 256GB - 512 bytes = 2^32 - 8 blocks
uint32_t counter_low = 0xFFFFFFF8; // 2^32 - 8
uint32_t counter_high = 0;
printf(" Processing 1KB starting at block 0xFFFFFFF8 (256GB - 512 bytes)...\n");
// This should cross the overflow boundary
int result = chacha20_encrypt_extended(key, counter_low, counter_high, nonce,
input, output, 1024);
if (result != 0) {
printf(" ❌ FAILED: Error processing data across 256GB boundary\n");
return 1;
}
printf(" ✓ Successfully processed data across 256GB boundary\n");
printf(" ✓ PASSED\n\n");
return 0;
}
// Test 3: Verify extended vs standard ChaCha20 compatibility
int test_compatibility() {
printf("Test 3: Compatibility with standard ChaCha20\n");
printf(" Verifying extended mode matches standard mode when counter_high=0...\n");
uint8_t key[32];
uint8_t nonce_standard[12];
uint8_t nonce_reduced[8];
uint8_t input[TEST_BLOCK_SIZE];
uint8_t output_standard[TEST_BLOCK_SIZE];
uint8_t output_extended[TEST_BLOCK_SIZE];
// Initialize test data
memset(key, 0x33, 32);
memset(nonce_standard, 0x44, 12);
memcpy(nonce_reduced, nonce_standard + 4, 8); // Extract last 8 bytes
memset(input, 0, TEST_BLOCK_SIZE);
uint32_t counter = 42;
// Standard ChaCha20
if (chacha20_encrypt(key, counter, nonce_standard, input,
output_standard, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED: Standard ChaCha20 error\n");
return 1;
}
// Extended ChaCha20 with counter_high=0 and matching nonce
// The extended version builds nonce as [counter_high][nonce_reduced]
// So we need to ensure the first 4 bytes of nonce_standard are 0
uint8_t nonce_standard_zero[12] = {0};
memcpy(nonce_standard_zero + 4, nonce_reduced, 8);
if (chacha20_encrypt(key, counter, nonce_standard_zero, input,
output_standard, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED: Standard ChaCha20 error\n");
return 1;
}
if (chacha20_encrypt_extended(key, counter, 0, nonce_reduced, input,
output_extended, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED: Extended ChaCha20 error\n");
return 1;
}
// Compare outputs
if (!blocks_equal(output_standard, output_extended, TEST_BLOCK_SIZE)) {
printf(" ❌ FAILED: Extended mode output differs from standard mode\n");
printf(" First 16 bytes of standard: ");
for (int i = 0; i < 16; i++) printf("%02x ", output_standard[i]);
printf("\n First 16 bytes of extended: ");
for (int i = 0; i < 16; i++) printf("%02x ", output_extended[i]);
printf("\n");
return 1;
}
printf(" ✓ Extended mode matches standard mode when counter_high=0\n");
printf(" ✓ PASSED\n\n");
return 0;
}
// Test 4: Stress test - verify no errors at extreme counter values
int test_extreme_values() {
printf("Test 4: Extreme counter values\n");
printf(" Testing at various extreme counter positions...\n");
uint8_t key[32];
uint8_t nonce[8];
uint8_t input[TEST_BLOCK_SIZE];
uint8_t output[TEST_BLOCK_SIZE];
memset(key, 0x99, 32);
memset(nonce, 0x66, 8);
memset(input, 0, TEST_BLOCK_SIZE);
// Test various extreme positions
struct {
uint32_t counter_low;
uint32_t counter_high;
const char* description;
} test_cases[] = {
{0x00000000, 0, "Start of first 256GB segment"},
{0xFFFFFFFF, 0, "End of first 256GB segment"},
{0x00000000, 1, "Start of second 256GB segment"},
{0xFFFFFFFF, 1, "End of second 256GB segment"},
{0x00000000, 0xFFFF, "Start of segment 65535"},
{0xFFFFFFFF, 0xFFFF, "End of segment 65535"},
};
for (size_t i = 0; i < sizeof(test_cases) / sizeof(test_cases[0]); i++) {
printf(" Testing: %s (0x%08X, 0x%08X)...\n",
test_cases[i].description,
test_cases[i].counter_low,
test_cases[i].counter_high);
if (chacha20_encrypt_extended(key, test_cases[i].counter_low,
test_cases[i].counter_high, nonce,
input, output, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED at %s\n", test_cases[i].description);
return 1;
}
}
printf(" ✓ All extreme values handled correctly\n");
printf(" ✓ PASSED\n\n");
return 0;
}
int main() {
printf("=================================================================\n");
printf("ChaCha20 Extended Counter Test Suite\n");
printf("=================================================================\n\n");
int failures = 0;
failures += test_counter_overflow();
failures += test_large_file_simulation();
failures += test_compatibility();
failures += test_extreme_values();
printf("=================================================================\n");
if (failures == 0) {
printf("✓ ALL TESTS PASSED\n");
printf("=================================================================\n");
printf("\nThe extended counter implementation is working correctly.\n");
printf("It can now handle pads larger than 256GB without overflow errors.\n");
return 0;
} else {
printf("❌ %d TEST(S) FAILED\n", failures);
printf("=================================================================\n");
return 1;
}
}

129
tests/test_padding.sh Executable file
View File

@@ -0,0 +1,129 @@
#!/bin/bash
# Test script for message padding implementation
set -e
echo "=== Testing Message Padding Implementation ==="
echo ""
# Colors
GREEN='\033[0;32m'
RED='\033[0;31m'
NC='\033[0m' # No Color
# Test counter
TESTS_PASSED=0
TESTS_FAILED=0
# Function to run a test
run_test() {
local test_name="$1"
local test_command="$2"
echo -n "Testing: $test_name... "
if eval "$test_command" > /dev/null 2>&1; then
echo -e "${GREEN}PASS${NC}"
((TESTS_PASSED++))
return 0
else
echo -e "${RED}FAIL${NC}"
((TESTS_FAILED++))
return 1
fi
}
# Create a small test pad if it doesn't exist
if [ ! -f "pads/"*.pad ]; then
echo "Creating test pad (1MB)..."
./build/otp-x86_64 generate 1MB
echo ""
fi
# Get the first pad checksum
PAD_CHKSUM=$(ls pads/*.pad | head -n 1 | xargs basename | sed 's/.pad$//')
echo "Using pad: ${PAD_CHKSUM:0:16}..."
echo ""
# Test 1: Encrypt and decrypt a short message (should be padded to 256 bytes)
echo "Test 1: Short message (10 bytes -> 256 bytes padded)"
TEST_MSG="Hello Test"
ENCRYPTED=$(echo "$TEST_MSG" | ./build/otp-x86_64 encrypt ${PAD_CHKSUM:0:8})
DECRYPTED=$(echo "$ENCRYPTED" | ./build/otp-x86_64 decrypt)
if [ "$DECRYPTED" = "$TEST_MSG" ]; then
echo -e "${GREEN}✓ Short message encryption/decryption successful${NC}"
((TESTS_PASSED++))
else
echo -e "${RED}✗ Short message failed${NC}"
echo " Expected: $TEST_MSG"
echo " Got: $DECRYPTED"
((TESTS_FAILED++))
fi
echo ""
# Test 2: Encrypt and decrypt a medium message (should be padded to 512 bytes)
echo "Test 2: Medium message (~300 bytes -> 512 bytes padded)"
TEST_MSG=$(printf 'A%.0s' {1..300})
ENCRYPTED=$(echo "$TEST_MSG" | ./build/otp-x86_64 encrypt ${PAD_CHKSUM:0:8})
DECRYPTED=$(echo "$ENCRYPTED" | ./build/otp-x86_64 decrypt)
if [ "$DECRYPTED" = "$TEST_MSG" ]; then
echo -e "${GREEN}✓ Medium message encryption/decryption successful${NC}"
((TESTS_PASSED++))
else
echo -e "${RED}✗ Medium message failed${NC}"
((TESTS_FAILED++))
fi
echo ""
# Test 3: Encrypt and decrypt with special characters
echo "Test 3: Special characters and unicode"
TEST_MSG="Hello! @#$%^&*() 测试"
ENCRYPTED=$(echo "$TEST_MSG" | ./build/otp-x86_64 encrypt ${PAD_CHKSUM:0:8})
DECRYPTED=$(echo "$ENCRYPTED" | ./build/otp-x86_64 decrypt)
if [ "$DECRYPTED" = "$TEST_MSG" ]; then
echo -e "${GREEN}✓ Special characters encryption/decryption successful${NC}"
((TESTS_PASSED++))
else
echo -e "${RED}✗ Special characters failed${NC}"
echo " Expected: $TEST_MSG"
echo " Got: $DECRYPTED"
((TESTS_FAILED++))
fi
echo ""
# Test 4: File encryption/decryption with padding
echo "Test 4: File encryption/decryption"
TEST_FILE="/tmp/otp_test_file.txt"
echo "This is a test file for OTP encryption with padding." > "$TEST_FILE"
./build/otp-x86_64 -f "$TEST_FILE" ${PAD_CHKSUM:0:8} -a -o /tmp/test_encrypted.otp.asc
./build/otp-x86_64 decrypt /tmp/test_encrypted.otp.asc -o /tmp/test_decrypted.txt
if diff "$TEST_FILE" /tmp/test_decrypted.txt > /dev/null 2>&1; then
echo -e "${GREEN}✓ File encryption/decryption successful${NC}"
((TESTS_PASSED++))
else
echo -e "${RED}✗ File encryption/decryption failed${NC}"
((TESTS_FAILED++))
fi
# Cleanup
rm -f "$TEST_FILE" /tmp/test_encrypted.otp.asc /tmp/test_decrypted.txt
echo ""
# Summary
echo "=== Test Summary ==="
echo -e "Tests passed: ${GREEN}${TESTS_PASSED}${NC}"
echo -e "Tests failed: ${RED}${TESTS_FAILED}${NC}"
echo ""
if [ $TESTS_FAILED -eq 0 ]; then
echo -e "${GREEN}All tests passed!${NC}"
exit 0
else
echo -e "${RED}Some tests failed.${NC}"
exit 1
fi