Compare commits

...

9 Commits

15 changed files with 1228 additions and 112 deletions

7
.gitignore vendored
View File

@@ -24,3 +24,10 @@ test_truerng
# Temporary files
*.pad
*.state
# Downloaded dependencies (source)
miniz/
microtar/
# Test directories
test_dir/

View File

@@ -1,25 +1,40 @@
CC = gcc
CFLAGS = -Wall -Wextra -std=c99 -Isrc
CFLAGS = -Wall -Wextra -std=c99 -Isrc -Isrc/miniz -Isrc/microtar
CFLAGS_MINIZ = -Wall -Wextra -std=c99 -D_POSIX_C_SOURCE=200112L -Isrc -Isrc/miniz -Isrc/microtar -Wno-unused-function -Wno-implicit-function-declaration
LIBS = -lm
LIBS_STATIC = -static -lm
ARCH = $(shell uname -m)
TARGET = build/otp-$(ARCH)
SOURCES = $(wildcard src/*.c)
MINIZ_SOURCES = $(wildcard src/miniz/*.c)
MICROTAR_SOURCES = $(wildcard src/microtar/*.c)
OBJS = $(SOURCES:.c=.o)
MINIZ_OBJS = $(MINIZ_SOURCES:.c=.o)
MICROTAR_OBJS = $(MICROTAR_SOURCES:.c=.o)
ALL_OBJS = $(OBJS) $(MINIZ_OBJS) $(MICROTAR_OBJS)
# Default build target
$(TARGET): $(OBJS)
$(TARGET): $(ALL_OBJS)
@mkdir -p build
$(CC) $(CFLAGS) -o $(TARGET) $(OBJS) $(LIBS)
@rm -f $(OBJS)
$(CC) $(CFLAGS) -o $(TARGET) $(ALL_OBJS) $(LIBS)
@rm -f $(ALL_OBJS)
# Static linking target
static: $(OBJS)
static: $(ALL_OBJS)
@mkdir -p build
$(CC) $(CFLAGS) -o $(TARGET) $(OBJS) $(LIBS_STATIC)
@rm -f $(OBJS)
$(CC) $(CFLAGS) -o $(TARGET) $(ALL_OBJS) $(LIBS_STATIC)
@rm -f $(ALL_OBJS)
%.o: %.c
# Compile main source files with full warnings
src/%.o: src/%.c
$(CC) $(CFLAGS) -c $< -o $@
# Compile miniz library files with reduced warnings
src/miniz/%.o: src/miniz/%.c
$(CC) $(CFLAGS_MINIZ) -c $< -o $@
# Compile microtar library files normally
src/microtar/%.o: src/microtar/%.c
$(CC) $(CFLAGS) -c $< -o $@
clean:

View File

@@ -58,14 +58,14 @@ One-time pads can be trivially encrypted and decrypted using pencil and paper, m
### Download Pre-Built Binaries
**[Download Current Linux x86](https://git.laantungir.net/laantungir/otp/releases/download/v0.3.33/otp-v0.3.33-linux-x86_64)**
**[Download Current Linux x86](https://git.laantungir.net/laantungir/otp/releases/download/v0.3.42/otp-v0.3.42-linux-x86_64)**
**[Download Current Raspberry Pi 64](https://git.laantungir.net/laantungir/otp/releases/download/v0.3.33/otp-v0.3.33-linux-arm64)**
**[Download Current Raspberry Pi 64](https://git.laantungir.net/laantungir/otp/releases/download/v0.3.42/otp-v0.3.42-linux-arm64)**
After downloading:
```bash
# Rename for convenience, then make executable
mv otp-v0.3.33-linux-x86_64 otp
mv otp-v0.3.42-linux-x86_64 otp
chmod +x otp
# Run it
@@ -431,6 +431,28 @@ No. ChkSum (first 16 chars) Size Used % Used
# Select "S" for show pad info, enter checksum or prefix
```
## Important Notes
### Size Units: Decimal (SI) vs Binary (IEC)
**This program uses decimal (SI) units for all size specifications**, matching the behavior of most system tools like `ls -lh`, `df -h`, and file managers:
- **1 KB** = 1,000 bytes (not 1,024)
- **1 MB** = 1,000,000 bytes (not 1,048,576)
- **1 GB** = 1,000,000,000 bytes (not 1,073,741,824)
- **1 TB** = 1,000,000,000,000 bytes (not 1,099,511,627,776)
**Why decimal units?**
- Consistency with system tools (`ls`, `df`, file managers)
- Matches storage device marketing (a "1TB" USB drive has ~1,000,000,000,000 bytes)
- Avoids confusion when comparing sizes across different tools
- Industry standard for storage devices and file systems
**Example:** When you request a 100GB pad, the program creates exactly 100,000,000,000 bytes, which will display as "100GB" in `ls -lh` and your file manager.
**Note:** Some technical tools may use binary units (GiB, MiB) where 1 GiB = 1,024³ bytes. This program intentionally uses decimal units for user-friendliness and consistency with common tools.
## License
This project includes automatic versioning system based on the Generic Automatic Version Increment System.

493
src/archive.c Normal file
View File

@@ -0,0 +1,493 @@
#define _POSIX_C_SOURCE 200809L
#define _DEFAULT_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <unistd.h>
#include <sys/stat.h>
#include <dirent.h>
#include <time.h>
#include "main.h"
#include "microtar/microtar.h"
// Suppress warnings from miniz header
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-function"
#include "miniz/miniz.h"
#pragma GCC diagnostic pop
////////////////////////////////////////////////////////////////////////////////
// DIRECTORY ARCHIVING FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Helper function to recursively add directory contents to TAR archive
static int add_directory_to_tar(mtar_t* tar, const char* base_path, const char* relative_path) {
DIR* dir = opendir(base_path);
if (!dir) {
printf("Error: Cannot open directory '%s'\n", base_path);
return 1;
}
struct dirent* entry;
while ((entry = readdir(dir)) != NULL) {
// Skip . and ..
if (strcmp(entry->d_name, ".") == 0 || strcmp(entry->d_name, "..") == 0) {
continue;
}
// Build full path
char full_path[2048];
snprintf(full_path, sizeof(full_path), "%s/%s", base_path, entry->d_name);
// Build relative path for TAR
char tar_path[2048];
if (strlen(relative_path) > 0) {
snprintf(tar_path, sizeof(tar_path), "%s/%s", relative_path, entry->d_name);
} else {
snprintf(tar_path, sizeof(tar_path), "%s", entry->d_name);
}
struct stat st;
if (stat(full_path, &st) != 0) {
printf("Warning: Cannot stat '%s', skipping\n", full_path);
continue;
}
if (S_ISDIR(st.st_mode)) {
// Recursively add subdirectory
if (add_directory_to_tar(tar, full_path, tar_path) != 0) {
closedir(dir);
return 1;
}
} else if (S_ISREG(st.st_mode)) {
// Add regular file
FILE* fp = fopen(full_path, "rb");
if (!fp) {
printf("Warning: Cannot open '%s', skipping\n", full_path);
continue;
}
// Get file size
fseek(fp, 0, SEEK_END);
size_t file_size = ftell(fp);
fseek(fp, 0, SEEK_SET);
// Read file data
unsigned char* file_data = malloc(file_size);
if (!file_data) {
printf("Error: Memory allocation failed for '%s'\n", full_path);
fclose(fp);
closedir(dir);
return 1;
}
size_t bytes_read = fread(file_data, 1, file_size, fp);
fclose(fp);
if (bytes_read != file_size) {
printf("Warning: Could not read entire file '%s', skipping\n", full_path);
free(file_data);
continue;
}
// Write to TAR
if (mtar_write_file_header(tar, tar_path, file_size) != MTAR_ESUCCESS) {
printf("Error: Failed to write TAR header for '%s'\n", tar_path);
free(file_data);
closedir(dir);
return 1;
}
if (mtar_write_data(tar, file_data, file_size) != MTAR_ESUCCESS) {
printf("Error: Failed to write TAR data for '%s'\n", tar_path);
free(file_data);
closedir(dir);
return 1;
}
free(file_data);
}
}
closedir(dir);
return 0;
}
// Create TAR archive from directory
int create_tar_archive(const char* dir_path, const char* tar_output_path) {
mtar_t tar;
if (mtar_open(&tar, tar_output_path, "w") != MTAR_ESUCCESS) {
printf("Error: Cannot create TAR file '%s'\n", tar_output_path);
return 1;
}
// Get directory name for relative paths
char dir_name[512];
const char* last_slash = strrchr(dir_path, '/');
if (last_slash) {
strncpy(dir_name, last_slash + 1, sizeof(dir_name) - 1);
} else {
strncpy(dir_name, dir_path, sizeof(dir_name) - 1);
}
dir_name[sizeof(dir_name) - 1] = '\0';
// Add directory contents to TAR
int result = add_directory_to_tar(&tar, dir_path, dir_name);
// Finalize and close TAR
mtar_finalize(&tar);
mtar_close(&tar);
return result;
}
// Extract TAR archive to directory
int extract_tar_archive(const char* tar_path, const char* output_dir) {
mtar_t tar;
mtar_header_t header;
if (mtar_open(&tar, tar_path, "r") != MTAR_ESUCCESS) {
printf("Error: Cannot open TAR file '%s'\n", tar_path);
return 1;
}
// Create output directory if it doesn't exist
mkdir(output_dir, 0755);
// Extract each file
while (mtar_read_header(&tar, &header) == MTAR_ESUCCESS) {
char output_path[2048];
snprintf(output_path, sizeof(output_path), "%s/%s", output_dir, header.name);
// Create parent directories
char* last_slash = strrchr(output_path, '/');
if (last_slash) {
char parent_dir[2048];
strncpy(parent_dir, output_path, last_slash - output_path);
parent_dir[last_slash - output_path] = '\0';
// Create directories recursively
char* p = parent_dir;
while (*p) {
if (*p == '/') {
*p = '\0';
mkdir(parent_dir, 0755);
*p = '/';
}
p++;
}
mkdir(parent_dir, 0755);
}
// Extract file data
unsigned char* data = malloc(header.size);
if (!data) {
printf("Error: Memory allocation failed\n");
mtar_close(&tar);
return 1;
}
if (mtar_read_data(&tar, data, header.size) != MTAR_ESUCCESS) {
printf("Error: Failed to read data for '%s'\n", header.name);
free(data);
mtar_close(&tar);
return 1;
}
// Write to file
FILE* fp = fopen(output_path, "wb");
if (!fp) {
printf("Error: Cannot create file '%s'\n", output_path);
free(data);
mtar_close(&tar);
return 1;
}
fwrite(data, 1, header.size, fp);
fclose(fp);
free(data);
mtar_next(&tar);
}
mtar_close(&tar);
return 0;
}
////////////////////////////////////////////////////////////////////////////////
// COMPRESSION FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Compress file with gzip (miniz)
int compress_file_gzip(const char* input_path, const char* output_path) {
// Read input file
FILE* in = fopen(input_path, "rb");
if (!in) {
printf("Error: Cannot open input file '%s'\n", input_path);
return 1;
}
fseek(in, 0, SEEK_END);
size_t input_size = ftell(in);
fseek(in, 0, SEEK_SET);
unsigned char* input_data = malloc(input_size);
if (!input_data) {
printf("Error: Memory allocation failed\n");
fclose(in);
return 1;
}
size_t bytes_read = fread(input_data, 1, input_size, in);
fclose(in);
if (bytes_read != input_size) {
printf("Error: Failed to read input file\n");
free(input_data);
return 1;
}
// Compress with miniz
mz_ulong compressed_size = compressBound(input_size);
unsigned char* compressed_data = malloc(compressed_size);
if (!compressed_data) {
printf("Error: Memory allocation failed\n");
free(input_data);
return 1;
}
int result = compress2(compressed_data, &compressed_size,
input_data, input_size,
MZ_BEST_COMPRESSION);
free(input_data);
if (result != MZ_OK) {
printf("Error: Compression failed (error code: %d)\n", result);
free(compressed_data);
return 1;
}
// Write compressed data
FILE* out = fopen(output_path, "wb");
if (!out) {
printf("Error: Cannot create output file '%s'\n", output_path);
free(compressed_data);
return 1;
}
fwrite(compressed_data, 1, compressed_size, out);
fclose(out);
free(compressed_data);
return 0;
}
// Decompress gzip file (miniz)
int decompress_file_gzip(const char* input_path, const char* output_path) {
// Read compressed file
FILE* in = fopen(input_path, "rb");
if (!in) {
printf("Error: Cannot open compressed file '%s'\n", input_path);
return 1;
}
fseek(in, 0, SEEK_END);
size_t compressed_size = ftell(in);
fseek(in, 0, SEEK_SET);
unsigned char* compressed_data = malloc(compressed_size);
if (!compressed_data) {
printf("Error: Memory allocation failed\n");
fclose(in);
return 1;
}
size_t bytes_read = fread(compressed_data, 1, compressed_size, in);
fclose(in);
if (bytes_read != compressed_size) {
printf("Error: Failed to read compressed file\n");
free(compressed_data);
return 1;
}
// Estimate decompressed size (try multiple times if needed)
mz_ulong output_size = compressed_size * 10;
unsigned char* output_data = NULL;
int result;
for (int attempt = 0; attempt < 3; attempt++) {
output_data = realloc(output_data, output_size);
if (!output_data) {
printf("Error: Memory allocation failed\n");
free(compressed_data);
return 1;
}
mz_ulong temp_size = output_size;
result = uncompress(output_data, &temp_size, compressed_data, compressed_size);
if (result == MZ_OK) {
output_size = temp_size;
break;
} else if (result == MZ_BUF_ERROR) {
// Buffer too small, try larger
output_size *= 2;
} else {
printf("Error: Decompression failed (error code: %d)\n", result);
free(compressed_data);
free(output_data);
return 1;
}
}
free(compressed_data);
if (result != MZ_OK) {
printf("Error: Decompression failed after multiple attempts\n");
free(output_data);
return 1;
}
// Write decompressed data
FILE* out = fopen(output_path, "wb");
if (!out) {
printf("Error: Cannot create output file '%s'\n", output_path);
free(output_data);
return 1;
}
fwrite(output_data, 1, output_size, out);
fclose(out);
free(output_data);
return 0;
}
////////////////////////////////////////////////////////////////////////////////
// HIGH-LEVEL DIRECTORY ENCRYPTION/DECRYPTION
////////////////////////////////////////////////////////////////////////////////
// Encrypt directory: TAR → GZIP → Encrypt
int encrypt_directory(const char* dir_path, const char* pad_identifier, const char* output_file) {
char temp_tar[512];
char temp_gz[512];
int result = 0;
// Generate temporary file paths
snprintf(temp_tar, sizeof(temp_tar), "/tmp/otp_tar_%d.tar", getpid());
snprintf(temp_gz, sizeof(temp_gz), "/tmp/otp_gz_%d.tar.gz", getpid());
printf("Creating TAR archive...\n");
if (create_tar_archive(dir_path, temp_tar) != 0) {
printf("Error: Failed to create TAR archive\n");
return 1;
}
printf("Compressing archive...\n");
if (compress_file_gzip(temp_tar, temp_gz) != 0) {
printf("Error: Failed to compress archive\n");
unlink(temp_tar);
return 1;
}
printf("Encrypting compressed archive...\n");
result = encrypt_file(pad_identifier, temp_gz, output_file, 0);
// Cleanup temporary files
unlink(temp_tar);
unlink(temp_gz);
if (result == 0) {
printf("Directory encrypted successfully: %s\n", output_file);
}
return result;
}
// Detect if file is a compressed TAR archive
int is_compressed_tar_archive(const char* file_path) {
FILE* fp = fopen(file_path, "rb");
if (!fp) {
return 0;
}
unsigned char magic[512];
size_t bytes_read = fread(magic, 1, sizeof(magic), fp);
fclose(fp);
if (bytes_read < 2) {
return 0;
}
// Check for GZIP magic bytes (0x1f 0x8b)
if (magic[0] == 0x1f && magic[1] == 0x8b) {
return 1;
}
// Check for TAR magic ("ustar" at offset 257)
if (bytes_read >= 262 && memcmp(magic + 257, "ustar", 5) == 0) {
return 1;
}
return 0;
}
// Decrypt and extract directory: Decrypt → GUNZIP → Extract TAR
int decrypt_and_extract_directory(const char* encrypted_file, const char* output_dir) {
char temp_decrypted[512];
char temp_tar[512];
int result = 0;
// Generate temporary file paths
snprintf(temp_decrypted, sizeof(temp_decrypted), "/tmp/otp_decrypt_%d", getpid());
snprintf(temp_tar, sizeof(temp_tar), "/tmp/otp_tar_%d.tar", getpid());
printf("Decrypting file...\n");
if (decrypt_file(encrypted_file, temp_decrypted) != 0) {
printf("Error: Failed to decrypt file\n");
return 1;
}
// Check if it's compressed
FILE* fp = fopen(temp_decrypted, "rb");
if (!fp) {
printf("Error: Cannot open decrypted file\n");
unlink(temp_decrypted);
return 1;
}
unsigned char magic[2];
fread(magic, 1, 2, fp);
fclose(fp);
if (magic[0] == 0x1f && magic[1] == 0x8b) {
// GZIP compressed
printf("Decompressing archive...\n");
if (decompress_file_gzip(temp_decrypted, temp_tar) != 0) {
printf("Error: Failed to decompress archive\n");
unlink(temp_decrypted);
return 1;
}
unlink(temp_decrypted);
} else {
// Not compressed, assume it's already TAR
rename(temp_decrypted, temp_tar);
}
printf("Extracting archive...\n");
result = extract_tar_archive(temp_tar, output_dir);
// Cleanup
unlink(temp_tar);
if (result == 0) {
printf("Directory extracted successfully to: %s\n", output_dir);
}
return result;
}

View File

@@ -297,7 +297,6 @@ int encrypt_text(const char* pad_identifier, const char* input_text) {
}
char text_buffer[MAX_INPUT_SIZE];
char chksum_hex[MAX_HASH_LENGTH];
uint64_t current_offset;
char pad_path[MAX_HASH_LENGTH + 20];
@@ -327,12 +326,8 @@ int encrypt_text(const char* pad_identifier, const char* input_text) {
}
}
// Calculate XOR checksum of pad file
if (calculate_checksum(pad_path, chksum_hex) != 0) {
printf("Error: Cannot calculate pad checksum\n");
free(pad_chksum);
return 1;
}
// Use pad_chksum directly - it's already the checksum from the filename
// No need to recalculate by reading the entire pad file
// Get input text - either from parameter or user input
if (input_text != NULL) {
@@ -464,7 +459,7 @@ int encrypt_text(const char* pad_identifier, const char* input_text) {
// Use universal ASCII armor generator
char* ascii_output;
if (generate_ascii_armor(chksum_hex, current_offset, ciphertext, input_len, &ascii_output) != 0) {
if (generate_ascii_armor(pad_chksum, current_offset, ciphertext, input_len, &ascii_output) != 0) {
printf("Error: Failed to generate ASCII armor\n");
free(pad_data);
free(ciphertext);
@@ -746,7 +741,6 @@ int encrypt_file(const char* pad_identifier, const char* input_file, const char*
return 1;
}
char chksum_hex[MAX_HASH_LENGTH];
uint64_t current_offset;
char pad_path[MAX_HASH_LENGTH + 20];
@@ -791,12 +785,8 @@ int encrypt_file(const char* pad_identifier, const char* input_file, const char*
}
}
// Calculate XOR checksum of pad file
if (calculate_checksum(pad_path, chksum_hex) != 0) {
printf("Error: Cannot calculate pad checksum\n");
free(pad_chksum);
return 1;
}
// Use pad_chksum directly - it's already the checksum from the filename
// No need to recalculate by reading the entire pad file
// Check if we have enough pad space
struct stat pad_stat;
@@ -927,7 +917,7 @@ int encrypt_file(const char* pad_identifier, const char* input_file, const char*
// Use universal ASCII armor generator
char* ascii_output;
if (generate_ascii_armor(chksum_hex, current_offset, encrypted_data, file_size, &ascii_output) != 0) {
if (generate_ascii_armor(pad_chksum, current_offset, encrypted_data, file_size, &ascii_output) != 0) {
printf("Error: Failed to generate ASCII armor\n");
fclose(output_fp);
free(encrypted_data);
@@ -961,7 +951,7 @@ int encrypt_file(const char* pad_identifier, const char* input_file, const char*
// Pad checksum: 32 bytes (binary)
unsigned char pad_chksum_bin[32];
for (int i = 0; i < 32; i++) {
sscanf(chksum_hex + i*2, "%2hhx", &pad_chksum_bin[i]);
sscanf(pad_chksum + i*2, "%2hhx", &pad_chksum_bin[i]);
}
fwrite(pad_chksum_bin, 1, 32, output_fp);

View File

@@ -82,7 +82,7 @@ int add_entropy_direct_xor(const char* pad_chksum, const unsigned char* entropy_
if (display_progress) {
printf("Adding entropy to pad using direct XOR...\n");
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1024.0*1024.0*1024.0), pad_size);
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1000.0*1000.0*1000.0), pad_size);
printf("Entropy size: %zu bytes\n", entropy_size);
}
@@ -212,15 +212,29 @@ int add_entropy_chacha20(const char* pad_chksum, const unsigned char* entropy_da
if (display_progress) {
printf("Adding entropy to pad using Chacha20...\n");
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1024.0*1024.0*1024.0), pad_size);
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1000.0*1000.0*1000.0), pad_size);
}
// Process pad in chunks
unsigned char buffer[64 * 1024]; // 64KB chunks
unsigned char keystream[64 * 1024];
uint64_t offset = 0;
uint32_t counter = 0;
uint32_t counter_low = 0;
uint32_t counter_high = 0;
time_t start_time = time(NULL);
// Use extended counter for pads larger than 256GB
// 256GB = 2^32 blocks * 64 bytes = 274,877,906,944 bytes
int use_extended = (pad_size > 274877906944ULL);
// For extended mode, use reduced 8-byte nonce
unsigned char nonce_reduced[8];
if (use_extended) {
memcpy(nonce_reduced, nonce + 4, 8);
if (display_progress) {
printf("Using extended counter mode for large pad (>256GB)\n");
}
}
while (offset < pad_size) {
size_t chunk_size = sizeof(buffer);
@@ -237,7 +251,15 @@ int add_entropy_chacha20(const char* pad_chksum, const unsigned char* entropy_da
}
// Generate keystream for this chunk
if (chacha20_encrypt(key, counter, nonce, buffer, keystream, chunk_size) != 0) {
int chacha_result;
if (use_extended) {
chacha_result = chacha20_encrypt_extended(key, counter_low, counter_high,
nonce_reduced, buffer, keystream, chunk_size);
} else {
chacha_result = chacha20_encrypt(key, counter_low, nonce, buffer, keystream, chunk_size);
}
if (chacha_result != 0) {
printf("Error: Chacha20 keystream generation failed\n");
fclose(pad_file);
chmod(pad_path, S_IRUSR);
@@ -265,7 +287,16 @@ int add_entropy_chacha20(const char* pad_chksum, const unsigned char* entropy_da
}
offset += chunk_size;
counter += (chunk_size + 63) / 64; // Round up for block count
// Update counters
uint32_t blocks = (chunk_size + 63) / 64; // Round up for block count
uint32_t old_counter_low = counter_low;
counter_low += blocks;
// Check for overflow and increment high counter
if (counter_low < old_counter_low) {
counter_high++;
}
// Show progress for large pads
if (display_progress && offset % (64 * 1024 * 1024) == 0) { // Every 64MB
@@ -282,7 +313,8 @@ int add_entropy_chacha20(const char* pad_chksum, const unsigned char* entropy_da
if (display_progress) {
show_progress(pad_size, pad_size, start_time);
printf("\n✓ Entropy successfully added to pad using Chacha20\n");
printf("\n✓ Entropy successfully added to pad using Chacha20%s\n",
use_extended ? " (extended counter)" : "");
printf("✓ Pad integrity maintained\n");
printf("✓ %zu bytes of entropy distributed across entire pad\n", entropy_size);
printf("✓ Pad restored to read-only mode\n");
@@ -593,8 +625,8 @@ int add_file_entropy_streaming(const char* pad_chksum, const char* file_path, si
if (display_progress) {
printf("Adding entropy to pad using streaming direct XOR...\n");
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1024.0*1024.0*1024.0), pad_size);
printf("Entropy file: %.2f GB (%zu bytes)\n", (double)file_size / (1024.0*1024.0*1024.0), file_size);
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1000.0*1000.0*1000.0), pad_size);
printf("Entropy file: %.2f GB (%zu bytes)\n", (double)file_size / (1000.0*1000.0*1000.0), file_size);
}
// Process in chunks

View File

@@ -23,7 +23,7 @@
#include <ctype.h>
// Version - Updated automatically by build.sh
#define OTP_VERSION "v0.3.33"
#define OTP_VERSION "v0.3.42"
// Constants
#define MAX_INPUT_SIZE 4096
@@ -130,6 +130,7 @@ char* get_preferred_editor(void);
char* get_preferred_file_manager(void);
int launch_text_editor(const char* initial_content, char* result_buffer, size_t buffer_size);
int launch_file_manager(const char* start_directory, char* selected_file, size_t buffer_size);
int launch_directory_manager(const char* start_directory, char* selected_dir, size_t buffer_size);
////////////////////////////////////////////////////////////////////////////////
// CORE CRYPTOGRAPHIC OPERATIONS
@@ -238,6 +239,23 @@ int update_pad_checksum_after_entropy(const char* old_chksum, char* new_chksum);
int rename_pad_files_safely(const char* old_chksum, const char* new_chksum);
int is_pad_unused(const char* pad_chksum);
////////////////////////////////////////////////////////////////////////////////
// DIRECTORY ARCHIVING AND COMPRESSION FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Directory encryption/decryption (TAR + GZIP + OTP)
int encrypt_directory(const char* dir_path, const char* pad_identifier, const char* output_file);
int decrypt_and_extract_directory(const char* encrypted_file, const char* output_dir);
int is_compressed_tar_archive(const char* file_path);
// TAR archive operations
int create_tar_archive(const char* dir_path, const char* tar_output_path);
int extract_tar_archive(const char* tar_path, const char* output_dir);
// Compression operations
int compress_file_gzip(const char* input_path, const char* output_path);
int decompress_file_gzip(const char* input_path, const char* output_path);
////////////////////////////////////////////////////////////////////////////////
// DIRECTORY MANAGEMENT FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
@@ -314,6 +332,7 @@ int handle_decrypt_menu(void);
int handle_pads_menu(void);
int handle_text_encrypt(void);
int handle_file_encrypt(void);
int handle_directory_encrypt(void);
int handle_verify_pad(const char* pad_chksum);
int handle_delete_pad(const char* pad_chksum);

View File

@@ -129,8 +129,8 @@ int chacha20_block(const uint8_t key[32], uint32_t counter,
return 0;
}
int chacha20_encrypt(const uint8_t key[32], uint32_t counter,
const uint8_t nonce[12], const uint8_t* input,
int chacha20_encrypt(const uint8_t key[32], uint32_t counter,
const uint8_t nonce[12], const uint8_t* input,
uint8_t* output, size_t length) {
uint8_t keystream[CHACHA20_BLOCK_SIZE];
size_t offset = 0;
@@ -161,3 +161,45 @@ int chacha20_encrypt(const uint8_t key[32], uint32_t counter,
return 0;
}
int chacha20_encrypt_extended(const uint8_t key[32], uint32_t counter_low,
uint32_t counter_high, const uint8_t nonce[8],
const uint8_t* input, uint8_t* output, size_t length) {
uint8_t keystream[CHACHA20_BLOCK_SIZE];
uint8_t extended_nonce[12];
size_t offset = 0;
while (length > 0) {
/* Build extended 12-byte nonce: [counter_high (4 bytes)][nonce (8 bytes)] */
u32_to_bytes_le(counter_high, extended_nonce);
memcpy(extended_nonce + 4, nonce, 8);
/* Generate keystream block using extended nonce */
int ret = chacha20_block(key, counter_low, extended_nonce, keystream);
if (ret != 0) {
return ret;
}
/* XOR with input to produce output */
size_t block_len = (length < CHACHA20_BLOCK_SIZE) ? length : CHACHA20_BLOCK_SIZE;
for (size_t i = 0; i < block_len; i++) {
output[offset + i] = input[offset + i] ^ keystream[i];
}
/* Move to next block */
offset += block_len;
length -= block_len;
counter_low++;
/* Check for counter_low overflow and increment counter_high */
if (counter_low == 0) {
counter_high++;
/* Check for counter_high overflow (extremely unlikely - > 1 exabyte) */
if (counter_high == 0) {
return -1; /* Extended counter wrapped around */
}
}
}
return 0;
}

View File

@@ -63,10 +63,10 @@ int chacha20_block(const uint8_t key[32], uint32_t counter,
/**
* ChaCha20 encryption/decryption
*
*
* Encrypts or decrypts data using ChaCha20 stream cipher.
* Since ChaCha20 is a stream cipher, encryption and decryption are the same operation.
*
*
* @param key[in] 32-byte key
* @param counter[in] Initial 32-bit counter value
* @param nonce[in] 12-byte nonce
@@ -75,10 +75,29 @@ int chacha20_block(const uint8_t key[32], uint32_t counter,
* @param length[in] Length of input data in bytes
* @return 0 on success, negative on error
*/
int chacha20_encrypt(const uint8_t key[32], uint32_t counter,
const uint8_t nonce[12], const uint8_t* input,
int chacha20_encrypt(const uint8_t key[32], uint32_t counter,
const uint8_t nonce[12], const uint8_t* input,
uint8_t* output, size_t length);
/**
* ChaCha20 encryption/decryption with extended counter (64-bit)
*
* Extended version that supports files larger than 256GB by using
* part of the nonce as a high-order counter extension.
*
* @param key[in] 32-byte key
* @param counter_low[in] Initial 32-bit counter value (low bits)
* @param counter_high[in] Initial 32-bit counter value (high bits)
* @param nonce[in] 8-byte reduced nonce (instead of 12)
* @param input[in] Input data to encrypt/decrypt
* @param output[out] Output buffer (can be same as input)
* @param length[in] Length of input data in bytes
* @return 0 on success, negative on error
*/
int chacha20_encrypt_extended(const uint8_t key[32], uint32_t counter_low,
uint32_t counter_high, const uint8_t nonce[8],
const uint8_t* input, uint8_t* output, size_t length);
/*
* ============================================================================
* UTILITY FUNCTIONS

View File

@@ -43,9 +43,9 @@ int show_pad_info(const char* chksum) {
printf("ChkSum: %s\n", chksum);
printf("File: %s\n", pad_filename);
double size_gb = (double)st.st_size / (1024.0 * 1024.0 * 1024.0);
double used_gb = (double)used_bytes / (1024.0 * 1024.0 * 1024.0);
double remaining_gb = (double)(st.st_size - used_bytes) / (1024.0 * 1024.0 * 1024.0);
double size_gb = (double)st.st_size / (1000.0 * 1000.0 * 1000.0);
double used_gb = (double)used_bytes / (1000.0 * 1000.0 * 1000.0);
double remaining_gb = (double)(st.st_size - used_bytes) / (1000.0 * 1000.0 * 1000.0);
printf("Total size: %.2f GB (%lu bytes)\n", size_gb, st.st_size);
printf("Used: %.2f GB (%lu bytes)\n", used_gb, used_bytes);
@@ -92,8 +92,8 @@ int generate_pad(uint64_t size_bytes, int display_progress) {
// Use f_bavail (available to non-root users) for accurate space reporting
// This accounts for filesystem reserved space (e.g., 5% on ext4)
uint64_t available_bytes = stat.f_bavail * stat.f_frsize;
double available_gb = (double)available_bytes / (1024.0 * 1024.0 * 1024.0);
double required_gb = (double)size_bytes / (1024.0 * 1024.0 * 1024.0);
double available_gb = (double)available_bytes / (1000.0 * 1000.0 * 1000.0);
double required_gb = (double)size_bytes / (1000.0 * 1000.0 * 1000.0);
if (available_bytes < size_bytes) {
printf("\n⚠ WARNING: Insufficient disk space!\n");
@@ -138,7 +138,7 @@ int generate_pad(uint64_t size_bytes, int display_progress) {
// Preallocate full file size using posix_fallocate for guaranteed space reservation
// This actually allocates disk blocks (unlike ftruncate which creates sparse files)
int fd = fileno(pad_file);
double size_gb = (double)size_bytes / (1024.0 * 1024.0 * 1024.0);
double size_gb = (double)size_bytes / (1000.0 * 1000.0 * 1000.0);
if (display_progress) {
printf("Allocating %.2f GB on disk...\n", size_gb);
@@ -253,10 +253,10 @@ int generate_pad(uint64_t size_bytes, int display_progress) {
}
// Initialize state file with offset 32 (first 32 bytes reserved for checksum encryption)
FILE* state_file = fopen(state_path, "wb");
FILE* state_file = fopen(state_path, "w");
if (state_file) {
uint64_t reserved_bytes = 32;
fwrite(&reserved_bytes, sizeof(uint64_t), 1, state_file);
fprintf(state_file, "offset=%lu\n", reserved_bytes);
fclose(state_file);
} else {
printf("Error: Failed to create state file\n");
@@ -265,7 +265,7 @@ int generate_pad(uint64_t size_bytes, int display_progress) {
}
if (display_progress) {
double final_size_gb = (double)size_bytes / (1024.0 * 1024.0 * 1024.0);
double final_size_gb = (double)size_bytes / (1000.0 * 1000.0 * 1000.0);
printf("Generated pad: %s (%.2f GB)\n", pad_path, final_size_gb);
}
printf("Pad checksum: %s\n", chksum_hex);
@@ -292,7 +292,7 @@ int read_state_offset(const char* pad_chksum, uint64_t* offset) {
return 0;
}
// Try to read as text format first (new format)
// Read text format only (required format: "offset=<number>")
char line[128];
if (fgets(line, sizeof(line), state_file)) {
// Check if it's text format (starts with "offset=")
@@ -302,21 +302,13 @@ int read_state_offset(const char* pad_chksum, uint64_t* offset) {
return 0;
}
// Not text format, try binary format (legacy)
// Not in proper text format - error
fclose(state_file);
state_file = fopen(state_filename, "rb");
if (!state_file) {
*offset = 0;
return 0;
}
if (fread(offset, sizeof(uint64_t), 1, state_file) != 1) {
fclose(state_file);
*offset = 0;
return 0;
}
fclose(state_file);
return 0;
fprintf(stderr, "Error: State file '%s' is not in proper text format\n", state_filename);
fprintf(stderr, "Expected format: offset=<number>\n");
fprintf(stderr, "Please convert old binary state files to text format\n");
*offset = 0;
return 1;
}
fclose(state_file);
@@ -434,25 +426,25 @@ char* select_pad_interactive(const char* title, const char* prompt, pad_filter_t
}
// Format total size
if (st.st_size < 1024) {
if (st.st_size < 1000) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%luB", st.st_size);
} else if (st.st_size < 1024 * 1024) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fKB", (double)st.st_size / 1024.0);
} else if (st.st_size < 1024 * 1024 * 1024) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fMB", (double)st.st_size / (1024.0 * 1024.0));
} else if (st.st_size < 1000 * 1000) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fKB", (double)st.st_size / 1000.0);
} else if (st.st_size < 1000 * 1000 * 1000) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fMB", (double)st.st_size / (1000.0 * 1000.0));
} else {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.2fGB", (double)st.st_size / (1024.0 * 1024.0 * 1024.0));
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.2fGB", (double)st.st_size / (1000.0 * 1000.0 * 1000.0));
}
// Format used size
if (used_bytes < 1024) {
if (used_bytes < 1000) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%luB", used_bytes);
} else if (used_bytes < 1024 * 1024) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fKB", (double)used_bytes / 1024.0);
} else if (used_bytes < 1024 * 1024 * 1024) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fMB", (double)used_bytes / (1024.0 * 1024.0));
} else if (used_bytes < 1000 * 1000) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fKB", (double)used_bytes / 1000.0);
} else if (used_bytes < 1000 * 1000 * 1000) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fMB", (double)used_bytes / (1000.0 * 1000.0));
} else {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.2fGB", (double)used_bytes / (1024.0 * 1024.0 * 1024.0));
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.2fGB", (double)used_bytes / (1000.0 * 1000.0 * 1000.0));
}
// Calculate percentage
@@ -478,6 +470,13 @@ char* select_pad_interactive(const char* title, const char* prompt, pad_filter_t
return NULL;
}
// If only one pad available, auto-select it
if (pad_count == 1) {
printf("\n%s\n", title);
printf("Only one pad available - auto-selecting: %.16s...\n\n", pads[0].chksum);
return strdup(pads[0].chksum);
}
// Calculate minimal unique prefixes for each pad
char prefixes[100][65];
int prefix_lengths[100];
@@ -634,6 +633,27 @@ int handle_pads_menu(void) {
// Get list of pads from current directory
const char* pads_dir = get_current_pads_dir();
// Display directory and space information
printf("Pads Directory: %s\n", pads_dir);
// Get filesystem space information
struct statvfs vfs_stat;
if (statvfs(pads_dir, &vfs_stat) == 0) {
uint64_t total_bytes = vfs_stat.f_blocks * vfs_stat.f_frsize;
uint64_t available_bytes = vfs_stat.f_bavail * vfs_stat.f_frsize;
uint64_t used_bytes = total_bytes - (vfs_stat.f_bfree * vfs_stat.f_frsize);
double total_gb = (double)total_bytes / (1000.0 * 1000.0 * 1000.0);
double available_gb = (double)available_bytes / (1000.0 * 1000.0 * 1000.0);
double used_gb = (double)used_bytes / (1000.0 * 1000.0 * 1000.0);
double used_percent = (double)used_bytes / total_bytes * 100.0;
printf("Drive Space: %.2f GB total, %.2f GB used (%.1f%%), %.2f GB available\n",
total_gb, used_gb, used_percent, available_gb);
}
printf("\n");
DIR* dir = opendir(pads_dir);
if (!dir) {
printf("Error: Cannot open pads directory %s\n", pads_dir);
@@ -669,25 +689,25 @@ int handle_pads_menu(void) {
read_state_offset(pads[pad_count].chksum, &used_bytes);
// Format total size
if (st.st_size < 1024) {
if (st.st_size < 1000) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%luB", st.st_size);
} else if (st.st_size < 1024 * 1024) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fKB", (double)st.st_size / 1024.0);
} else if (st.st_size < 1024 * 1024 * 1024) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fMB", (double)st.st_size / (1024.0 * 1024.0));
} else if (st.st_size < 1000 * 1000) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fKB", (double)st.st_size / 1000.0);
} else if (st.st_size < 1000 * 1000 * 1000) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fMB", (double)st.st_size / (1000.0 * 1000.0));
} else {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.2fGB", (double)st.st_size / (1024.0 * 1024.0 * 1024.0));
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.2fGB", (double)st.st_size / (1000.0 * 1000.0 * 1000.0));
}
// Format used size
if (used_bytes < 1024) {
if (used_bytes < 1000) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%luB", used_bytes);
} else if (used_bytes < 1024 * 1024) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fKB", (double)used_bytes / 1024.0);
} else if (used_bytes < 1024 * 1024 * 1024) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fMB", (double)used_bytes / (1024.0 * 1024.0));
} else if (used_bytes < 1000 * 1000) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fKB", (double)used_bytes / 1000.0);
} else if (used_bytes < 1000 * 1000 * 1000) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fMB", (double)used_bytes / (1000.0 * 1000.0));
} else {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.2fGB", (double)used_bytes / (1024.0 * 1024.0 * 1024.0));
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.2fGB", (double)used_bytes / (1000.0 * 1000.0 * 1000.0));
}
// Calculate percentage
@@ -999,9 +1019,9 @@ int handle_verify_pad(const char* chksum) {
printf("ChkSum: %s\n", chksum);
printf("File: %s\n", pad_filename);
double size_gb = (double)st.st_size / (1024.0 * 1024.0 * 1024.0);
double used_gb = (double)used_bytes / (1024.0 * 1024.0 * 1024.0);
double remaining_gb = (double)(st.st_size - used_bytes) / (1024.0 * 1024.0 * 1024.0);
double size_gb = (double)st.st_size / (1000.0 * 1000.0 * 1000.0);
double used_gb = (double)used_bytes / (1000.0 * 1000.0 * 1000.0);
double remaining_gb = (double)(st.st_size - used_bytes) / (1000.0 * 1000.0 * 1000.0);
printf("Total size: %.2f GB (%lu bytes)\n", size_gb, st.st_size);
printf("Used: %.2f GB (%lu bytes)\n", used_gb, used_bytes);
@@ -1067,7 +1087,7 @@ int handle_delete_pad(const char* chksum) {
uint64_t used_bytes;
read_state_offset(chksum, &used_bytes);
double size_gb = (double)st.st_size / (1024.0 * 1024.0 * 1024.0);
double size_gb = (double)st.st_size / (1000.0 * 1000.0 * 1000.0);
printf("\nPad to delete:\n");
printf("Checksum: %s\n", chksum);
printf("Size: %.2f GB\n", size_gb);
@@ -1255,7 +1275,7 @@ int handle_add_entropy_to_pad(const char* pad_chksum) {
target_bytes = (size_t)pad_stat.st_size;
printf("\nHardware RNG selected - will enhance entire pad with hardware entropy\n");
printf("Pad size: %.2f GB (%zu bytes)\n",
(double)target_bytes / (1024.0 * 1024.0 * 1024.0), target_bytes);
(double)target_bytes / (1000.0 * 1000.0 * 1000.0), target_bytes);
} else if (entropy_source == ENTROPY_SOURCE_FILE) {
// Special handling for file entropy - ask for file path first
char file_path[512];
@@ -1277,7 +1297,7 @@ int handle_add_entropy_to_pad(const char* pad_chksum) {
printf("\nFile vs Pad Size Analysis:\n");
printf(" Entropy file: %zu bytes\n", file_size);
printf(" Target pad: %.2f GB (%lu bytes)\n",
(double)pad_size / (1024.0 * 1024.0 * 1024.0), pad_size);
(double)pad_size / (1000.0 * 1000.0 * 1000.0), pad_size);
// Smart method selection based on file size vs pad size
if (file_size >= pad_size) {
@@ -1461,10 +1481,10 @@ int handle_add_entropy_to_pad(const char* pad_chksum) {
printf("✓ Device test successful!\n");
printf(" Test collected: %zu bytes in %.1f seconds\n", test_collected, test_time);
printf(" Speed: %.1f KB/s (%.1f MB/s)\n", bytes_per_second / 1024.0, bytes_per_second / (1024.0 * 1024.0));
printf(" Speed: %.1f KB/s (%.1f MB/s)\n", bytes_per_second / 1000.0, bytes_per_second / (1000.0 * 1000.0));
printf("\nPad enhancement estimate:\n");
printf(" Pad size: %.2f GB (%zu bytes)\n", (double)target_bytes / (1024.0 * 1024.0 * 1024.0), target_bytes);
printf(" Pad size: %.2f GB (%zu bytes)\n", (double)target_bytes / (1000.0 * 1000.0 * 1000.0), target_bytes);
if (estimated_hours >= 1.0) {
printf(" Estimated time: %.1f hours\n", estimated_hours);

View File

@@ -153,7 +153,7 @@ int collect_truerng_entropy_streaming_from_device(const hardware_rng_device_t* d
if (display_progress) {
printf("Streaming entropy from %s to pad...\n", device->friendly_name);
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1024.0*1024.0*1024.0), pad_size);
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1000.0*1000.0*1000.0), pad_size);
printf("Enhancing entire pad with hardware entropy\n");
}

133
src/ui.c
View File

@@ -99,6 +99,9 @@ int interactive_mode(void) {
case 'F':
handle_file_encrypt();
break;
case 'R':
handle_directory_encrypt();
break;
case 'D':
handle_decrypt_menu();
break;
@@ -125,11 +128,12 @@ void show_main_menu(void) {
print_centered_header(header, 0);
printf("\n");
printf(" \033[4mT\033[0mext encrypt\n"); //TEXT ENCRYPT
printf(" \033[4mF\033[0mile encrypt\n"); //FILE ENCRYPT
printf(" \033[4mD\033[0mecrypt\n"); //DECRYPT
printf(" \033[4mP\033[0mads\n"); //PADS
printf(" E\033[4mx\033[0mit\n"); //EXIT
printf(" \033[4mT\033[0mext encrypt\n"); //TEXT ENCRYPT
printf(" \033[4mF\033[0mile encrypt\n"); //FILE ENCRYPT
printf(" Di\033[4mr\033[0mectory encrypt\n"); //DIRECTORY ENCRYPT
printf(" \033[4mD\033[0mecrypt\n"); //DECRYPT
printf(" \033[4mP\033[0mads\n"); //PADS
printf(" E\033[4mx\033[0mit\n"); //EXIT
printf("\nSelect option: ");
}
@@ -152,7 +156,7 @@ int handle_generate_menu(void) {
return 1;
}
double size_gb = (double)size / (1024.0 * 1024.0 * 1024.0);
double size_gb = (double)size / (1000.0 * 1000.0 * 1000.0);
printf("Generating %.2f GB pad...\n", size_gb);
printf("Note: Use 'Add entropy' in Pads menu to enhance randomness after creation.\n");
@@ -352,7 +356,23 @@ int handle_decrypt_menu(void) {
return 1;
}
return decrypt_file(selected_file, output_file);
// Check if it's a directory archive
if (strstr(selected_file, ".tar.gz.otp") || strstr(selected_file, ".tar.otp")) {
// It's a directory archive - extract to directory
char extract_dir[512];
strncpy(extract_dir, output_file, sizeof(extract_dir) - 1);
extract_dir[sizeof(extract_dir) - 1] = '\0';
// Remove .tar.gz.otp or .tar.otp extension to get directory name
char* ext = strstr(extract_dir, ".tar.gz.otp");
if (!ext) ext = strstr(extract_dir, ".tar.otp");
if (ext) *ext = '\0';
printf("Extracting directory archive to: %s/\n", extract_dir);
return decrypt_and_extract_directory(selected_file, extract_dir);
} else {
return decrypt_file(selected_file, output_file);
}
}
else if (strncmp(input_line, "-----BEGIN OTP MESSAGE-----", 27) == 0) {
// Looks like ASCII armor - collect the full message
@@ -404,7 +424,23 @@ int handle_decrypt_menu(void) {
return 1;
}
return decrypt_file(input_line, output_file);
// Check if it's a directory archive
if (strstr(input_line, ".tar.gz.otp") || strstr(input_line, ".tar.otp")) {
// It's a directory archive - extract to directory
char extract_dir[512];
strncpy(extract_dir, output_file, sizeof(extract_dir) - 1);
extract_dir[sizeof(extract_dir) - 1] = '\0';
// Remove .tar.gz.otp or .tar.otp extension to get directory name
char* ext = strstr(extract_dir, ".tar.gz.otp");
if (!ext) ext = strstr(extract_dir, ".tar.otp");
if (ext) *ext = '\0';
printf("Extracting directory archive to: %s/\n", extract_dir);
return decrypt_and_extract_directory(input_line, extract_dir);
} else {
return decrypt_file(input_line, output_file);
}
} else {
printf("Input not recognized as ASCII armor or valid file path.\n");
return 1;
@@ -501,5 +537,86 @@ int handle_file_encrypt(void) {
int result = encrypt_file(selected_pad, input_file, output_filename, ascii_armor);
free(selected_pad);
return result;
}
int handle_directory_encrypt(void) {
printf("\n");
print_centered_header("Directory Encrypt", 0);
// Directory selection options
printf("\nDirectory selection options:\n");
printf(" 1. Type directory path directly\n");
printf(" 2. Use file manager (navigate to directory)\n");
printf("Enter choice (1-2): ");
char choice_input[10];
char dir_path[512];
if (!fgets(choice_input, sizeof(choice_input), stdin)) {
printf("Error: Failed to read input\n");
return 1;
}
if (atoi(choice_input) == 2) {
// Use directory manager
if (launch_directory_manager(".", dir_path, sizeof(dir_path)) != 0) {
printf("Falling back to manual directory path entry.\n");
printf("Enter directory path to encrypt: ");
if (!fgets(dir_path, sizeof(dir_path), stdin)) {
printf("Error: Failed to read input\n");
return 1;
}
dir_path[strcspn(dir_path, "\n")] = 0;
}
} else {
// Direct directory path input
printf("Enter directory path to encrypt: ");
if (!fgets(dir_path, sizeof(dir_path), stdin)) {
printf("Error: Failed to read input\n");
return 1;
}
dir_path[strcspn(dir_path, "\n")] = 0;
}
// Check if directory exists
struct stat st;
if (stat(dir_path, &st) != 0 || !S_ISDIR(st.st_mode)) {
printf("Error: '%s' is not a valid directory\n", dir_path);
return 1;
}
// Select pad
char* selected_pad = select_pad_interactive("Select Pad for Directory Encryption",
"Select pad (by prefix)",
PAD_FILTER_ALL, 1);
if (!selected_pad) {
printf("Directory encryption cancelled.\n");
return 1;
}
// Generate default output filename
char default_output[1024];
const char* dir_name = strrchr(dir_path, '/');
if (dir_name) {
dir_name++; // Skip the '/'
} else {
dir_name = dir_path;
}
snprintf(default_output, sizeof(default_output), "%s.tar.gz.otp", dir_name);
// Get output filename
char output_file[512];
if (get_filename_with_default("Output filename:", default_output, output_file, sizeof(output_file)) != 0) {
printf("Error: Failed to read input\n");
free(selected_pad);
return 1;
}
// Encrypt directory
int result = encrypt_directory(dir_path, selected_pad, output_file);
free(selected_pad);
return result;
}

View File

@@ -240,6 +240,83 @@ int launch_file_manager(const char* start_directory, char* selected_file, size_t
return 1; // Fall back to manual entry
}
int launch_directory_manager(const char* start_directory, char* selected_dir, size_t buffer_size) {
char* fm = get_preferred_file_manager();
if (!fm) {
printf("No file manager found. Please install ranger, fzf, nnn, or lf.\n");
printf("Falling back to manual directory path entry.\n");
return 1; // Fall back to manual entry
}
char temp_filename[64];
snprintf(temp_filename, sizeof(temp_filename), "/tmp/otp_dir_%ld.tmp", time(NULL));
char command[512];
int result = 1;
printf("Opening %s for directory selection...\n", fm);
printf("Navigate INTO the directory you want to encrypt, then press 'q' to quit and select it.\n");
if (strcmp(fm, "ranger") == 0) {
snprintf(command, sizeof(command), "cd '%s' && ranger --choosedir=%s",
start_directory ? start_directory : ".", temp_filename);
} else if (strcmp(fm, "fzf") == 0) {
// fzf doesn't have directory-only mode easily, use find
snprintf(command, sizeof(command), "cd '%s' && find . -type d | fzf > %s",
start_directory ? start_directory : ".", temp_filename);
} else if (strcmp(fm, "nnn") == 0) {
snprintf(command, sizeof(command), "cd '%s' && nnn -p %s",
start_directory ? start_directory : ".", temp_filename);
} else if (strcmp(fm, "lf") == 0) {
snprintf(command, sizeof(command), "cd '%s' && lf -selection-path=%s",
start_directory ? start_directory : ".", temp_filename);
}
result = system(command);
if (result == 0 || result == 256) { // Some file managers return 256 on success
// Read selected directory from temp file
FILE* temp_file = fopen(temp_filename, "r");
if (temp_file) {
if (fgets(selected_dir, buffer_size, temp_file)) {
// Remove trailing newline
selected_dir[strcspn(selected_dir, "\n\r")] = 0;
// For relative paths, make absolute if needed
if (selected_dir[0] == '.' && selected_dir[1] == '/') {
char current_dir[512];
if (getcwd(current_dir, sizeof(current_dir))) {
char abs_path[1024];
snprintf(abs_path, sizeof(abs_path), "%s/%s", current_dir, selected_dir + 2);
strncpy(selected_dir, abs_path, buffer_size - 1);
selected_dir[buffer_size - 1] = '\0';
}
} else if (selected_dir[0] != '/') {
// Relative path without ./
char current_dir[512];
if (getcwd(current_dir, sizeof(current_dir))) {
char abs_path[1024];
snprintf(abs_path, sizeof(abs_path), "%s/%s", current_dir, selected_dir);
strncpy(selected_dir, abs_path, buffer_size - 1);
selected_dir[buffer_size - 1] = '\0';
}
}
fclose(temp_file);
unlink(temp_filename);
free(fm);
return 0; // Success
}
fclose(temp_file);
}
}
// Clean up and indicate failure
unlink(temp_filename);
free(fm);
return 1; // Fall back to manual entry
}
// Stdin detection functions implementation
int has_stdin_data(void) {
// Check if stdin is a pipe/redirect (not a terminal)
@@ -519,13 +596,13 @@ uint64_t parse_size_string(const char* size_str) {
}
if (strcmp(unit, "K") == 0 || strcmp(unit, "KB") == 0) {
multiplier = 1024ULL;
multiplier = 1000ULL;
} else if (strcmp(unit, "M") == 0 || strcmp(unit, "MB") == 0) {
multiplier = 1024ULL * 1024ULL;
multiplier = 1000ULL * 1000ULL;
} else if (strcmp(unit, "G") == 0 || strcmp(unit, "GB") == 0) {
multiplier = 1024ULL * 1024ULL * 1024ULL;
multiplier = 1000ULL * 1000ULL * 1000ULL;
} else if (strcmp(unit, "T") == 0 || strcmp(unit, "TB") == 0) {
multiplier = 1024ULL * 1024ULL * 1024ULL * 1024ULL;
multiplier = 1000ULL * 1000ULL * 1000ULL * 1000ULL;
} else {
return 0; // Invalid unit
}

BIN
tests/test_chacha20_extended Executable file

Binary file not shown.

View File

@@ -0,0 +1,263 @@
/*
* test_chacha20_extended.c - Test ChaCha20 extended counter implementation
*
* This test verifies that the extended counter properly handles:
* 1. Counter overflow at 2^32 blocks (256GB boundary)
* 2. Correct keystream generation across the overflow boundary
* 3. No duplicate keystream blocks
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include "../src/nostr_chacha20.h"
#define TEST_BLOCK_SIZE 64
#define BLOCKS_NEAR_OVERFLOW 10 // Test blocks around overflow point
// Test helper: Compare two blocks for equality
int blocks_equal(const uint8_t* block1, const uint8_t* block2, size_t len) {
return memcmp(block1, block2, len) == 0;
}
// Test 1: Verify extended counter handles overflow correctly
int test_counter_overflow() {
printf("Test 1: Counter overflow handling\n");
printf(" Testing counter transition from 0xFFFFFFFF to 0x00000000...\n");
uint8_t key[32];
uint8_t nonce[8];
uint8_t input[TEST_BLOCK_SIZE];
uint8_t output1[TEST_BLOCK_SIZE];
uint8_t output2[TEST_BLOCK_SIZE];
uint8_t output3[TEST_BLOCK_SIZE];
// Initialize test data
memset(key, 0xAA, 32);
memset(nonce, 0xBB, 8);
memset(input, 0, TEST_BLOCK_SIZE);
// Test at counter_low = 0xFFFFFFFE, counter_high = 0
uint32_t counter_low = 0xFFFFFFFE;
uint32_t counter_high = 0;
printf(" Block at counter_low=0xFFFFFFFE, counter_high=0...\n");
if (chacha20_encrypt_extended(key, counter_low, counter_high, nonce,
input, output1, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED: Error at counter_low=0xFFFFFFFE\n");
return 1;
}
// Test at counter_low = 0xFFFFFFFF, counter_high = 0
counter_low = 0xFFFFFFFF;
printf(" Block at counter_low=0xFFFFFFFF, counter_high=0...\n");
if (chacha20_encrypt_extended(key, counter_low, counter_high, nonce,
input, output2, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED: Error at counter_low=0xFFFFFFFF\n");
return 1;
}
// Test at counter_low = 0x00000000, counter_high = 1 (after overflow)
counter_low = 0x00000000;
counter_high = 1;
printf(" Block at counter_low=0x00000000, counter_high=1...\n");
if (chacha20_encrypt_extended(key, counter_low, counter_high, nonce,
input, output3, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED: Error at counter_low=0x00000000, counter_high=1\n");
return 1;
}
// Verify all three blocks are different (no keystream reuse)
if (blocks_equal(output1, output2, TEST_BLOCK_SIZE)) {
printf(" ❌ FAILED: Blocks at 0xFFFFFFFE and 0xFFFFFFFF are identical!\n");
return 1;
}
if (blocks_equal(output2, output3, TEST_BLOCK_SIZE)) {
printf(" ❌ FAILED: Blocks at 0xFFFFFFFF,0 and 0x00000000,1 are identical!\n");
return 1;
}
if (blocks_equal(output1, output3, TEST_BLOCK_SIZE)) {
printf(" ❌ FAILED: Blocks at 0xFFFFFFFE,0 and 0x00000000,1 are identical!\n");
return 1;
}
printf(" ✓ All blocks are unique across overflow boundary\n");
printf(" ✓ PASSED\n\n");
return 0;
}
// Test 2: Simulate processing data that crosses 256GB boundary
int test_large_file_simulation() {
printf("Test 2: Large file simulation (256GB+ boundary)\n");
printf(" Simulating processing across 256GB boundary...\n");
uint8_t key[32];
uint8_t nonce[8];
uint8_t input[1024];
uint8_t output[1024];
// Initialize test data
memset(key, 0x55, 32);
memset(nonce, 0x77, 8);
for (int i = 0; i < 1024; i++) {
input[i] = i & 0xFF;
}
// Simulate being at 256GB - 512 bytes (just before overflow)
// 256GB = 2^32 blocks * 64 bytes = 274,877,906,944 bytes
// Block number at 256GB - 512 bytes = 2^32 - 8 blocks
uint32_t counter_low = 0xFFFFFFF8; // 2^32 - 8
uint32_t counter_high = 0;
printf(" Processing 1KB starting at block 0xFFFFFFF8 (256GB - 512 bytes)...\n");
// This should cross the overflow boundary
int result = chacha20_encrypt_extended(key, counter_low, counter_high, nonce,
input, output, 1024);
if (result != 0) {
printf(" ❌ FAILED: Error processing data across 256GB boundary\n");
return 1;
}
printf(" ✓ Successfully processed data across 256GB boundary\n");
printf(" ✓ PASSED\n\n");
return 0;
}
// Test 3: Verify extended vs standard ChaCha20 compatibility
int test_compatibility() {
printf("Test 3: Compatibility with standard ChaCha20\n");
printf(" Verifying extended mode matches standard mode when counter_high=0...\n");
uint8_t key[32];
uint8_t nonce_standard[12];
uint8_t nonce_reduced[8];
uint8_t input[TEST_BLOCK_SIZE];
uint8_t output_standard[TEST_BLOCK_SIZE];
uint8_t output_extended[TEST_BLOCK_SIZE];
// Initialize test data
memset(key, 0x33, 32);
memset(nonce_standard, 0x44, 12);
memcpy(nonce_reduced, nonce_standard + 4, 8); // Extract last 8 bytes
memset(input, 0, TEST_BLOCK_SIZE);
uint32_t counter = 42;
// Standard ChaCha20
if (chacha20_encrypt(key, counter, nonce_standard, input,
output_standard, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED: Standard ChaCha20 error\n");
return 1;
}
// Extended ChaCha20 with counter_high=0 and matching nonce
// The extended version builds nonce as [counter_high][nonce_reduced]
// So we need to ensure the first 4 bytes of nonce_standard are 0
uint8_t nonce_standard_zero[12] = {0};
memcpy(nonce_standard_zero + 4, nonce_reduced, 8);
if (chacha20_encrypt(key, counter, nonce_standard_zero, input,
output_standard, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED: Standard ChaCha20 error\n");
return 1;
}
if (chacha20_encrypt_extended(key, counter, 0, nonce_reduced, input,
output_extended, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED: Extended ChaCha20 error\n");
return 1;
}
// Compare outputs
if (!blocks_equal(output_standard, output_extended, TEST_BLOCK_SIZE)) {
printf(" ❌ FAILED: Extended mode output differs from standard mode\n");
printf(" First 16 bytes of standard: ");
for (int i = 0; i < 16; i++) printf("%02x ", output_standard[i]);
printf("\n First 16 bytes of extended: ");
for (int i = 0; i < 16; i++) printf("%02x ", output_extended[i]);
printf("\n");
return 1;
}
printf(" ✓ Extended mode matches standard mode when counter_high=0\n");
printf(" ✓ PASSED\n\n");
return 0;
}
// Test 4: Stress test - verify no errors at extreme counter values
int test_extreme_values() {
printf("Test 4: Extreme counter values\n");
printf(" Testing at various extreme counter positions...\n");
uint8_t key[32];
uint8_t nonce[8];
uint8_t input[TEST_BLOCK_SIZE];
uint8_t output[TEST_BLOCK_SIZE];
memset(key, 0x99, 32);
memset(nonce, 0x66, 8);
memset(input, 0, TEST_BLOCK_SIZE);
// Test various extreme positions
struct {
uint32_t counter_low;
uint32_t counter_high;
const char* description;
} test_cases[] = {
{0x00000000, 0, "Start of first 256GB segment"},
{0xFFFFFFFF, 0, "End of first 256GB segment"},
{0x00000000, 1, "Start of second 256GB segment"},
{0xFFFFFFFF, 1, "End of second 256GB segment"},
{0x00000000, 0xFFFF, "Start of segment 65535"},
{0xFFFFFFFF, 0xFFFF, "End of segment 65535"},
};
for (size_t i = 0; i < sizeof(test_cases) / sizeof(test_cases[0]); i++) {
printf(" Testing: %s (0x%08X, 0x%08X)...\n",
test_cases[i].description,
test_cases[i].counter_low,
test_cases[i].counter_high);
if (chacha20_encrypt_extended(key, test_cases[i].counter_low,
test_cases[i].counter_high, nonce,
input, output, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED at %s\n", test_cases[i].description);
return 1;
}
}
printf(" ✓ All extreme values handled correctly\n");
printf(" ✓ PASSED\n\n");
return 0;
}
int main() {
printf("=================================================================\n");
printf("ChaCha20 Extended Counter Test Suite\n");
printf("=================================================================\n\n");
int failures = 0;
failures += test_counter_overflow();
failures += test_large_file_simulation();
failures += test_compatibility();
failures += test_extreme_values();
printf("=================================================================\n");
if (failures == 0) {
printf("✓ ALL TESTS PASSED\n");
printf("=================================================================\n");
printf("\nThe extended counter implementation is working correctly.\n");
printf("It can now handle pads larger than 256GB without overflow errors.\n");
return 0;
} else {
printf("❌ %d TEST(S) FAILED\n", failures);
printf("=================================================================\n");
return 1;
}
}